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1 Motivation

Rapid advancement of artificial intelligence led to the widespread use of large language models (LLMs) in code
generation, particularly in programming competitions. Although AI-generated code could help participants, it also
raised concerns about fairness and originality in contests where human problem solving skills were evaluated. Detecting
AI-generated code had to become an important task in ensuring the integrity of programming competitions.

Traditional methods of plagiarism detection were often insufficient for identifying AI-generated code, as LLMs could
produce highly varied and syntactically correct solutions that differed from human-written code. Machine learning
(ML) approaches offered a promising solution by analyzing patterns in code structure, style, and other latent features
that distinguished machine-generated code from human-written code.

In this project, we explored different ML approaches to detect AI-generated Python code, because this is on of the most
popular programming language among contest competitors. We compared two main strategies:

• Pre-trained LLM-based detection — leveraging a powerful but computationally heavy model to classify code
based on deep semantic features

• AST-based models — utilizing abstract syntax tree embeddings for efficient code representation

Our goal is to evaluate the trade-offs between accuracy and computational efficiency, ensuring that the solution is both
reliable and practical for real-world programming competitions conducted on Accept [1]. Using these approaches,
our aim is to develop a robust detection system that can help maintain fairness in coding contests while optimizing
performance for large-scale use.

2 Related work

The detection of AI-generated code has gained significant attention with the recent rise of LLMs like ChatGPT, Gemini,
and GitHub Copilot. Previous studies have explored the detection of machine-generated text using stylometric and
statistical techniques, often focusing on natural language (e.g. [6]). Suh et al. proposed GPTSniffer, a fine-tuned
CodeBERT model for Java code detection, but its ability to generalize to other languages such as Python remained
limited [7]. Additional work by Choi et al. investigated the attribution of authorship of source code through LLMs [2].
However, most of these studies have focused on general-purpose detection without specialization for Python or the
nuances of specific model requirements. Our work extends this line of research by developing a targeted machine
learning pipeline to identify generated Python code, considering the constraints on time consumption.
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3 Data generation

First of all, the dataset of both human-written and AI-generated codes should be created. The final dataset include
12 427 labeled code snippets.

3.1 Human-written entities

As human-written code snippets, anonymized Python solutions of Accept [1] platform users are used. Only valid
solutions were used: for example, codes that resulted in a compilation error were omitted. In total, 5 951 human-written
solutions were included into dataset.

3.2 AI-generated entities

To generate AI-plagiarized code snippets, we decided to use the following LLM models:

• Evil

• Llama-3.2-3b

• BLACKBOX.AI

• DeepSeek

The tasks from Accept [1] (solutions of which resulted in human-written codes) were added to the following prompt
and then passed to the LLM:

Write a Python solution for the following task. The code should look like it was written by an intermediate
student: practical but not overly optimized or perfect. Follow these guidelines:
1. Use not overly long names (e.g., res instead of result or final_output_value)
2. Do not include comments or explanations
3. Avoid using functions, prefer straightforward logic
4. Apply small stylistic deviations, like mixing single/double quotes, occasional redundant logic, inconsistent
spacing, etc
5. No error handling
6. Do not print to output anything except answer to the problem without any annotations
Finally, return just pure python code

Therefore, in total there are 6 477 AI-generated code snippets.

4 LLM approach

We decided to check several LLM models to solve our problem — DeBERTaV3 and CodeBERT. To use them, we
added a linear layer with one output and sigmoid activation function to predict the probability of text to be AI generated.
We used Adam optimizer with learning rate 2e-5 and trained them for all models within two epochs achieving decent
performance.

4.1 DeBERTaV3

DeBERTa [4] improves the BERT and RoBERTa models using disentangled attention and improved mask decoder.
With those two improvements, DeBERTa outperforms RoBERTa in most natural language understanding (NLU) tasks.

4.2 CodeBERT

CodeBERT [3] — bimodal pre-trained model for programming language (PL) and natural language (NL). CodeBERT
learns general-purpose representations that support downstream NL-PL applications such as natural language code
search, code documentation generation, etc.
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https://huggingface.co/DavidAU/L3.1-Evil-Reasoning-Dark-Planet-Hermes-R1-Uncensored-8B?not-for-all-audiences=true
https://huggingface.co/meta-llama/Llama-3.2-3B
https://www.blackbox.ai/
https://chat.deepseek.com/
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5 AST approach

An Abstract Syntax Tree (AST) is a finite labeled oriented tree in which the inner vertices are mapped to programming
language operators and the leaves to their corresponding operands.

To distinguish between human-written and AI-generated Python code, we used an abstract syntax tree (AST) based
representation that captures the structural and syntactic patterns of the code. Unlike raw text-based or token-based
methods, AST provides a more robust and hierarchical representation of code, making it suitable for detecting differences
in coding styles between humans and AI models.

To convert the Python source code into its AST representation the Tree-sitter library was used. It parses the code into a
tree structure where:

• Nodes represent syntactic elements: functions, loops, conditionals, etc.

• Edges define the relationships between these elements

For example, for the code in Listing 1, Abstract Syntax Tree is depicted in Figure 1.

1 a = 10
2 b = 5
3 if a < b:
4 c = a

Listing 1: Python code snippet

Figure 1: Example of AST

5.1 Decision Tree and Random Forest

To opposite the computationally expensive LLM-based approach, we explored lightweight yet effective tree-based
models — Decision Trees and Random Forests — trained on AST features. These models provide a strong balance
between performance and efficiency, making them particularly suitable for deployment in programming competitions
where fast inference is critical. As another profit, the Decision Tree modes are quite interpretable (fig. 2).
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https://tree-sitter.github.io/tree-sitter/
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Figure 2: Example of trained Decision Tree with depth 3

However, a notable limitation of tree-based approaches is their reliance on static feature representations. As AI
code generation models evolve with new architectures, fine-tuning techniques, and prompt engineering strategies,
the statistical patterns in generated code may change over time. This means that tree-based models, while highly
performance in deployment, require periodic retraining on updated datasets to maintain detection accuracy. Without
regular updates, their effectiveness may degrade as newer AI models produce code that diverges from previously learned
patterns.

5.2 Multi-Layer Perceptron

To complement tree-based methods like Decision Trees and Random Forests, we also explored a Multi-Layer Perceptron
(MLP) approach for detecting AI-generated Python code. The MLP model consists of four linear layers with LeakyReLU
activation functions and dropout layers for regularization. The input to the network consists of embeddings derived
from the Abstract Syntax Tree (AST) representation of the code, and the output is a probability score indicating whether
the code was AI-generated. This neural network approach provides a more sophisticated, non-linear alternative capable
of capturing complex patterns in the data while maintaining robustness through dropout regularization. The MLP serves
as an additional method in our comparative analysis of different techniques for AI-generated code detection.

6 Evaluation and comparison

6.1 Comparison of models

The results of the proposed approaches are shown on Table 1. As you can notice, the CodeBERT-base model
demonstrated the best performance in terms of all metrics: F1 score, Roc/Auc, Precision, Recall and Accuracy.
However, at the same time it is the second biggest and slowest model. The AST-based Random Forest (with 20
estimators) demonstrates decent performance though is quite fast and memory-efficient, though its metrics are still
descent.

6.2 Interpretability

In order to interpret decisions of our models, we decided to add Local Interpretable Model-agnostic Explanations
(LIME) [5] to our pipeline.

For example, for the code in Listing 2, the LIME explanations for AST Random Forest and CodeBERT models are
shown in Figures 3 and 4 respectively.
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Table 1: Comparison of models

Model F1 ROC/AUC Precision Recall Accuracy Time (s) Memory (MB)

DeBERTa-v3-xsmall 0.899 0.890 0.870 0.930 0.891 0.07 269
DeBERTa-v3-base 0.903 0.899 0.902 0.904 0.899 0.13 701
CodeBERT-base 0.959 0.959 0.978 0.941 0.958 0.07 475

Decision Tree AST 0.796 0.787 0.794 0.798 0.788 0.001 0.04
Random Forest AST 0.841 0.835 0.834 0.847 0.835 0.002 5.8
MLP AST 0.787 0.785 0.809 0.767 0.784 0.004 0.06

1 n = int(input ())
2 a = sorted(map(int , input().split ()))
3 b = sorted(map(int , input().split ()))
4 s = 0
5 for i in range(n-1, -1,-1):
6 s += abs(a[i]-b[i])
7 print(s)

Listing 2: Python code snippet

Figure 3: Lime explanation for AST Random Forest

Figure 4: Lime explanation for CodeBERT
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The explanation provided by LIME for both models might seem to be unsatisfactory due to applied time constraints to
keep fast inference. Also, the principle of LIME work includes generating perturbations, which can result in strange
and not existing code embeddings, hence the explanations can be possibly limited for interpretation.

7 Deployment

We decided to deploy our CodeBERT and AST Random Forest models via a Telegram bot with help of aiogram library.
We choose such models, since they show best performance for each approach. You can access bot here1.

8 GitHub

You can check GitHub of this project here.

9 Results and Discussion

We successfully implemented models for AI code detection, which might be used inside Accept [1] system. Both the
AST-based and LLM-based approaches showed excellent performance. While CodeBERT wins in terms of metrics,
AST-based Random Forest Classifier is much faster and less memory consuming, so it can be considered as the best
solution in terms of proposed constraints: throughput and memory limitations. Also, the LIME was used to explain the
decision of selected models. Finally, the Telegram bot was deployed for demonstration purposes.
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1If the bot is down, write to Vsevolod Klyushev
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