
SMILES Summer School Projects Proceedings

Applied AlphaEvolve
Dmitrii Beresnev

2
, Roman Khalikov

5
, Alexander Tolmachev

3, 4
, Ivan Ulitin

6
, Ainura Zakirova

2

Project curators: Vladimir Makharev
1, 2

, Petr Anokhin
1

1
Ariticial Intelligence Research Institute, Moscow, Russia

2
Innopolis University, Innopolis, Russia

3
Skolkovo Institute of Science and Technology, Moscow, Russia

4
Mocsow Institute of Physics and Technology, Moscow, Russia

5
Joint-Stock Company Rotec Digital Solutions, Moscow, Russia

6
Institute of Precision Mechanics and Control Problems of the Russian Academy of Sciences, Saratov,

Russia

Abstract
Recent advances in automated discovery, exemplified by
Google’s AlphaEvolve framework, demonstrate the effec-
tiveness of integrating large language models (LLMs) with
evolutionary search for complex optimization tasks. Al-
phaEvolve sets a new standard in this domain through
candidate code generation and rigorous evaluation mecha-
nisms. In this study, we run and analyze OpenEvolve agent,
the open-source implementation of AlphaEvolve. We fur-
ther extend our analysis to the applied Computer-Aided De-
sign (CAD) reconstruction problem, demonstrating the ap-
proach’s versatility and establishing a comprehensive ex-
perimental benchmark for this task. Besides, we explore
the possibility of the AlphaEvolve appliance to the com-
binatorial geometry problems. Our source-code is avail-
able at GitHub: https://github.com/crogs-foundation/
openevolve-smiles25.
Index Terms: AlphaEvolve, OpenEvolve, LLM, CAD reconstruc-

tion, combinatorial geometry

1 Introduction

CAD is a cornerstone of modern engineering and manufacturing,

enabling the creation andmodification of intricate 3Dmodels. Tra-

ditionally, this has been a manual, labor-intensive process requir-

ing specialized software and expertise. However, the rise of LLMs

and advanced code generation techniques has opened up new pos-

sibilities for automating CAD model creation from natural lan-

guage descriptions. This research explores an innovative approach

to this problem by adapting AlphaEvolve, an evolutionary agentic

framework, for the CAD Reconstruction task. We use OpenEvolve

agent [7], an open-source implementation of AlphaEvolve, to gen-

erate and optimize CAD models from textual prompts.

This study focuses on a specific and challenging aspect of CAD:

translating abstract, text-based descriptions into precise and man-

ufacturable 3D models. While traditional LLMs have shown some

success in this domain through a process known as zero-shot gen-

eration (creating a model from a single prompt), they often strug-

gle with complex geometries, precise dimensions, and combinato-

rial operations. Our approach posits that an evolutionary frame-

work can systematically overcome these limitations by iteratively

refining and evolving generated code. By applying the principles

of evolutionary computation, the OpenEvolve framework can not

only produce high-quality solutions but also explore a wide, di-

verse range of valid designs, leading to more robust and accurate

results than those achieved by a one-off, zero-shot approach. Fur-

Figure 1. Overview of AlphaEvolve framework

thermore, the framework’s adaptability is demonstrated by its ap-

plication to combinatorial geometry problems, a class of tasks that

involve finding optimal configurations from a finite set of geomet-

ric objects, such as set partitioning or tiling.

1.1 Hypothesis

This work explores the hypothesis that the AlphaEvolve agent

[6], implemented within the OpenEvolve framework [7], can be

adapted to the CAD Reconstruction task and other applied do-

mains, achieving robust performance that surpasses the zero-

shot capabilities of state-of-the-art LLMs or task-specific base-

lines. Building upon prior research on AlphaEvolve applications,

this study focuses on executing and analyzing OpenEvolve—an

open-source implementation of AlphaEvolve, with the goal of

contributing to the CAD Reconstruction task and improving

the framework’s core components where possible. The CAD

experiments involve benchmarking on standard datasets (e.g.,

Text2CAD, DeepCAD) using metrics such as Chamfer Distance,

Intersection over Union, Invalidity Ratio, and custom evaluation

criteria. Additionally, the applicability of the AlphaEvolve frame-

work to combinatorial geometry problems is explored.

2 Background & Literature Review
The field of AI-driven design and generation has advanced signif-

icantly, especially with large language models (LLMs) and evolu-

tionary algorithms. A key development is AlphaEvolve, an evo-

SMILES 2025 1

https://github.com/crogs-foundation/openevolve-smiles25
https://github.com/crogs-foundation/openevolve-smiles25


SMILES Summer School Projects Proceedings

lutionary coding agent that uses LLMs for general-purpose al-

gorithm discovery and optimization [6]. AlphaEvolve employs

multiple LLMs to generate diverse code solutions, which are then

refined through an evolutionary process. This method has suc-

ceeded in complex tasks like data center scheduling, AI model

training, and hardware design, showing its ability to evolve en-

tire codebases rather than just single functions.

This approach fits into the broader framework of multi-agent

systems (MAS), where autonomous agents work together to solve

problems [2]. Another related concept is the Darwin Gödel Ma-

chine (DGM), a self-improving system that updates its own code,

representing progress in open-ended evolution [12]. However,

DGM has a complex structure and lacks open-source implementa-

tions, while AlphaEvolve offers accessible tools (e.g., OpenEvolve
1
,

OpenAlpha_Evolve
2
).

The CAD Reconstruction problem, converting inputs like text

or point cloud into CAD model, is an important challenge in en-

gineering. What is more crucial in industry, is to recover a mod-

eling script from an existing mesh file of a 3D object, enabling

further refinement, parametric control, or iterative modification

of the model. This also called CAD reverse engineering prob-

lem, which goal is to reconstruct of boundary representation (B-

Rep). Standard datasets like DeepCAD and Text2CAD have sup-

ported progress by providing construction sequences and text de-

scriptions [11], [3]. A recent breakthrough is CADrille, a multi-

modalmodel that fine-tunes an LLMusing reinforcement learning,

achieving top results by optimizing both geometric accuracy and

code validity [5]. However, CADrille depends on a single LLM’s

knowledge, which may limit robustness and creativity. Evolution-

ary methods like AlphaEvolve could help explore a wider solution

space, leading to more diverse and validated outcomes.

Evolution-based approaches for large language models (LLMs),

including AlphaEvolve and its open-source implementation

OpenEvolve, provide powerful tools for discovering structures

or objects with desirable properties when their “quality“ can be

quantified through metrics that depend monotonically on their

underlying characteristics. This makes LLM-driven evolutionary

methods particularly promising for problems in combinatorial ge-

ometry, which studies geometric objects with combinatorial con-

straints—such as maximizing edge/vertex counts in graphs, find-

ing optimal partitions or coverings, and analyzing graph config-

urations. The key idea involves efficiently verifying constrained

objects through computable metrics (e.g., set diameter lengths,

graph invariants, etc.). In this work, we explore the application

of AlphaEvolve to the problem of partitioning sets into subsets of

smaller diameter. This task is deeply connected to fundamental

questions in combinatorial geometry, including the Borsuk conjec-
ture [1] and the Hadwiger–Nelson problem [8].

Specifically, we consider partitioning the 𝑛-dimensional unit-

diameter ball (i.e., a ball of radius 𝑟 = 1/2) into (𝑛 + 1) subsets
while minimizing the maximum diameter among them. Theoret-

ically, optimal bounds for such partitions can be derived from a

regular simplex inscribed in the boundary of the unit ball. Our

experiments evaluate the effectiveness of evolutionary methods

for this partition task and compare computational results against

known theoretical values. Although solving this problem does not

produce new bounds for combinatorial geometry, it serves as an

1 https://github.com/codelion/openevolve
2 https://github.com/shyamsaktawat/OpenAlpha_Evolve

important benchmark for evolutionary approaches in this domain

and lays the groundwork for future research.

3 Methods

3.1 OpenEvolve agent

The AlphaEvolve is an evolutionary agentic framework to gener-

ate a state-of-the-art solutions for a user-defined task, as depicted

in Figure 1. Basically it uses two agents to generate a code and

to perform an evaluation and feedback generation. Original im-

plementation employed Gemini 2.0 Flash and 2.0 Pro versions re-

spectively. OpenEvolve is an open-source implementation of the

AlphaEvolve. It also proposes additional improvements to the Al-

phaEvolve, for example, it allows to employ any number of open-

source models as evaluators using local inference and/or APIs.

3.1.1 Key components To initiate the evolutionary process us-

ing the OpenEvolve framework, three key components must be

defined: the initial program, the evaluator, and the configura-

tion. The initial program typically consists of a text file containing

a code snippet written in any supported programming language

that serves as the starting point for evolutionary improvement via

OpenEvolve. The evaluator is a Python script that assesses the

quality of candidate programs using user-defined evaluation met-

rics. These metrics are designed such that higher values corre-

spond to better performance, guiding the evolutionary algorithm

toward more optimal solutions.

The configuration file plays a central role by specifying criti-

cal parameters for the evolutionary task. It includes the hyperpa-

rameters of the evolutionary algorithm, settings for the agents for

code generation, the number of evolutionary iterations, and a sys-

tem prompt that provides high-level instructions for the intended

CAD model generation. This modular design allows OpenEvolve

to be adapted to a wide range of code synthesis and optimization

tasks, including the refinement and evolution of CAD modeling

scripts.

3.1.2 Evolution process OpenEvolve leverages theMAP-Elites

algorithm as its core evolutionary engine to achieve a balance be-

tween performance optimization and behavioral diversity. MAP-

Elites is a quality-diversity algorithm that maintains a structured

archive of elite solutions across a discretized feature space, allow-

ing the system to simultaneously explore a broad range of solution

types while refining high-performing individuals. In OpenEvolve,

the feature space is defined by interpretable dimensions such as

program complexity and functional diversity, though it can be ex-

tended to task-specific metrics. This structured search encour-

ages the discovery of not only top-performing CAD programs but

also diverse and creative alternatives. The framework supports

island-based evolution, where multiple sub-populations (or is-

lands) evolve in parallel with periodic migration, promoting cross-

fertilization of ideas and preventing premature convergence.

3.2 Inference Resources

For our local inference experiments, we used a mix of special-

ized hardware and cloud services. Our main resources provided

by school organizers included Huawei’s ModelArts with Ascend

TPUs and a Yandex DataSphere GPU service. We also used the

2 SMILES 2025

https://github.com/codelion/openevolve
https://github.com/shyamsaktawat/OpenAlpha_Evolve


SMILES Summer School Projects Proceedings

Table 1
Shapes used in the current research

Figure name Picture Text description

Tube

A tall vertical cylinder (116mm diameter, 200mm height) is partially subtracted by a smaller offset

cylinder (66mm diameter, 200mm height) in the center of the cylinder.

Gear

Gear wheel: inner radius of 10 mm, outer radius of 40 mm, thickness of 20 mm, with 6 rectangular

cogs. The cogs are as thick as the gear, protruding 10 mm outwards and 20 mm wide. The cogs

are inserted 2 mm into the gear body.

Open Box

A box with a length of 150mm, a width of 100mm, and a bottom thickness of 10mm. The walls

are 40mm high. The walls along the length have a thickness of 15mm, and the walls along the

width have a thickness of 30mm.

Ladder

The resulting object is a solid, monolithic block measuring 60 mm wide, 80 mm high, and 50 mm

deep. It has a two-step profile on its front face composed of 40 mm risers and 30 mm treads. The

block is bisected by a full-width planar cut on its right side that connects the top-back edge to the

bottom-front edge, creating a new face angled at approximately 58 degrees relative to the base.

Spheres

A large sphere with a radius of 100mm is modified by subtracting a smaller sphere (radius 80mm)

shifted 20mm up and 70mm left from the center. Another small sphere (radius 50mm) touches

the bottom of the large sphere from the outside.

OpenRouter
3
, GPT4Free

4
, and Mistral AI

5
for quicker tests. For a

complete list of all the hardware and services, see Appendix 6.1.

3.3 CAD Reconstruction
3.3.1 Dataset For our 3D CAD reconstruction task, we used the

Text2CAD dataset [4] , which consists of pairs of natural language

descriptions and corresponding Python code that uses the Cad-

Query library to generate precise 3Dmodels. Each sample includes

a detailed textual explanation of the object’s dimensions, shape,

and geometric operations, along with the Python code required to

model it.

Along with each description, the corresponding script provided

in the dataset serves as the ground truth and is used for evaluation.

We compare the 3D model produced by the LLM-generated script

against the ground truth model by rendering both and computing

similarity metrics, presented in the Section 3.3.2.

For our test set, we selected five shapes — tube, gear, open box,

ladder, and spheres (see Table 1). These shapes were intention-

ally chosen to represent varying levels of complexity: the tube is

relatively simple, while the ladder and spheres more detailed and

complex geometric descriptions. This progression allowed us to

evaluate how well OpenEvolve performs across different difficulty

levels.

Although the original descriptions in the dataset are highly de-

tailed, we have decided to modify them to better suit the needs

of our specific task. Rather than using full text description, we ab-

stracted them to include only the key geometric information—such

3 https://openrouter.ai/
4 https://github.com/xtekky/gpt4free
5 https://mistral.ai/

as the overall shape, dimensions, and main features. Despite the

simplification, the modified descriptions still provide all the essen-

tial details needed for the model to correctly infer the modeling

procedure. The main motivation for description simplification is

to make the OpenEvolve approach practical for real-world use. In

reality, users are unlikely to provide highly detailed, fine-grained

descriptions, even though such detail would make the task easier

for the language model. Table 4 shows original description for the

10-sided polygon prism and its simplified version.

3.3.2 Scoring and Metrics To quantitatively evaluate the sim-

ilarity between a predicted mesh (𝑀𝑝𝑟𝑒𝑑 ) and its corresponding

ground-truth mesh (𝑀𝑔𝑡 ), we compute a comprehensive set of ge-

ometric and structural metrics. To ensure scale and position in-

variance, all meshes are first normalized: they are centered at the

origin and uniformly scaled to fit within a unit cube. This nor-

malization is crucial as it provides a canonical space for compari-

son and ensures our distance-based metrics are well-behaved. The

metrics are organized into three distinct categories:

Volumetric: These metrics assess the overlap in 3D space.

• Intersection over Union (IoU) is a standard metric that mea-

sures the ratio of the intersection volume to the union vol-

ume of the two meshes. It provides a highly accurate mea-

sure of volumetric overlap but can be computationally ex-

pensive and sensitive to non-watertight meshes

• Voxelized Intersection over Union (VIoU) serves as a robust and
efficient approximation of IoU. To compute it, we voxelize

both meshes into a 64× 64× 64 grid and calculate the IoU on

the resulting binary voxel representations. This approach is

more resilient to topological errors in the input meshes and

SMILES 2025 3

https://openrouter.ai/
https://github.com/xtekky/gpt4free
https://mistral.ai/


SMILES Summer School Projects Proceedings

Table 2
Evaluation metrics with corresponding short names (aliases) and formulae. 𝑀𝑝𝑟𝑒𝑑 and𝑀𝑔𝑡 are the predicted and ground-truth meshes. 𝑃𝑝𝑟𝑒𝑑 and 𝑃𝑔𝑡 are

point clouds sampled from their respective surfaces.

Metric Alias Category Formula

Intersection over Union iou Volumetric

vol(𝑀𝑝𝑟𝑒𝑑∩𝑀𝑔𝑡 )
vol(𝑀𝑝𝑟𝑒𝑑∪𝑀𝑔𝑡 )

Voxelized IoU viou Volumetric

|𝑉𝑝𝑟𝑒𝑑∩𝑉𝑔𝑡 |
|𝑉𝑝𝑟𝑒𝑑∪𝑉𝑔𝑡 |

, where𝑉 is the set of occupied voxels.

Chamfer Distance (Similarity) cd Point-Based 1 − 1

2

(
1

|𝑃𝑝𝑟𝑒𝑑 |
∑

𝑥 ∈𝑃𝑝𝑟𝑒𝑑 min𝑦∈𝑃𝑔𝑡 ∥𝑥 − 𝑦 ∥2
2
+ 1

|𝑃𝑔𝑡 |
∑

𝑦∈𝑃𝑔𝑡 min𝑥 ∈𝑃𝑝𝑟𝑒𝑑 ∥𝑦 − 𝑥 ∥2
2

)
Hausdorff Distance (Similarity) hd Point-Based 1 − max

(
sup𝑥 ∈𝑃𝑝𝑟𝑒𝑑 inf𝑦∈𝑃𝑔𝑡 ∥𝑥 − 𝑦 ∥2, sup𝑦∈𝑃𝑔𝑡 inf𝑥 ∈𝑃𝑝𝑟𝑒𝑑 ∥𝑦 − 𝑥 ∥2

)
Wasserstein Distance (Similarity) wd Point-Based 1 − EMD

2 (𝑃𝑝𝑟𝑒𝑑 , 𝑃𝑔𝑡 ) , computed with a squared Euclidean cost matrix.

Area Similarity as Property-Based 1 −
|Area(𝑀𝑝𝑟𝑒𝑑 )−Area(𝑀𝑔𝑡 ) |
Area(𝑀𝑝𝑟𝑒𝑑 )+Area(𝑀𝑔𝑡 )

Inertia Similarity is Property-Based 1 −
∥𝐼𝑝𝑟𝑒𝑑 −𝐼𝑔𝑡 ∥𝐹

∥𝐼𝑝𝑟𝑒𝑑 ∥𝐹 +∥𝐼𝑔𝑡 ∥𝐹
, where 𝐼 is the inertia tensor and ∥ · ∥𝐹 is the Frobenius norm.

significantly faster

Point-Based: These metrics evaluate similarity by comparing

point clouds sampled from the mesh surfaces. For each metric, a

distance 𝑑 (𝑃𝑝𝑟𝑒𝑑 , 𝑃𝑔𝑡 ) is first computed between the point cloud

𝑃𝑝𝑟𝑒𝑑 sampled from 𝑀𝑝𝑟𝑒𝑑 and 𝑃𝑔𝑡 from 𝑀𝑔𝑡 . Since all meshes are

normalized to a unit cube, the distances are bounded. We convert

this distance 𝑑 into a similarity score 𝑠 ∈ [0, 1] via the transforma-

tion 𝑠 = 1 − 𝑑 , where a score of 1 indicates perfect similarity.

• Chamfer Distance (CD) measures the average squared dis-

tance from each point in one cloud to its nearest neighbor

in the other. We sample 𝑁 = 5000 points from each mesh for

this calculation. It provides a good overall measure of surface

alignment.

• Hausdorff Distance (HD)measures the maximum distance be-

tween the two point clouds, effectively identifying theworst-

case mismatch. This makes it sensitive to outliers and sig-

nificant geometric deviations. It is computed on the same

𝑁 = 5000 point samples.

• Wasserstein Distance (WD), also known as the Earth Mover’s

Distance (EMD), quantifies the minimum cost required to

transform one point distribution into the other. We compute

the squared EMD using a squared Euclidean cost matrix be-

tween point clouds of size 𝑁 = 1000. This metric is partic-

ularly effective at capturing structural differences and is less

sensitive to small misalignments than CD.

Property-Based: These metrics compare intrinsic physical or

geometric properties of the meshes.

• Area Similarity (AS) compares the total surface area of the

two meshes, calculated as a normalized similarity score

based on their relative difference.

• Inertia Similarity (IS) compares the 3D shapes’ mass distri-

bution by calculating the similarity between their moment

of inertia tensors. The similarity is defined as one minus the

normalized Frobenius norm of the difference between the

tensors, providing a descriptor of rotational symmetry and

mass distribution.

Table 2 provides a summary of all metrics, their short names,

and their mathematical formulations. Combined score — overall

score — is computed as sum of the seven described metrics. As

all the described metrics are in [0, 1] range, the combine score 7.0

corresponds to a perfect sahpes match, while 0.0 — to total mis-

match.

3.3.3 Zero-shot baseline To validate the applicability of

OpenEvolve to CAD reconstruction tasks, we conducted a series

of preliminary experiments using canonical test cases. The de-

signed 3D model descriptions was inputed to the selected open-

source models Qwen2.5-72b, Qwen2.5-Coder-32b, and closed-

source GPT-o4-mini.

3.3.4 OpenEvolve Implementation Based on provided exam-

ple runs, we implemented the core components of our reconstruc-

tion framework, adapting them to generate parametric CAD code.

As an initial benchmark, we evaluated the reconstruction of a sim-

ple geometric shape—box with a hole (Figure 7, left).

The evolutionary search was configured with 100 iterations, a

choice made to strike a balance between available time and achiev-

ing meaningful performance results. The remaining parameters,

including a population size of 50 and 3 parallel islands, were set

by default as per the MAP-Elites algorithm. Consistent with the

original OpenEvolve setup, two large language models were em-

ployed for code generation: mistral-small-latest (assigned to 80%

of the population) and mistral-large-latest (20%). This mixture of

models enabled a balance between fast exploratory sampling and

higher-quality code generation, contributing to population diver-

sity and search efficiency.

To run OpenEvolve, we constructed an evaluator prompt and

an initial program to evolve, which are presented in the Appendix

6.2 and Appendix 6.3 respectively. The evaluator prompt was care-

fully designed to provide a comprehensive and unambiguous eval-

uation framework by containing a role, requirements, metrics de-

scription, and task description. This structure guides the evaluator

toward a consistent assessment, while the initial program, a very

simple CadQuery shape, provides a foundational yet flexible start-

ing point for the evolutionary process to explore a broad range of

design solutions.

4 SMILES 2025



SMILES Summer School Projects Proceedings

3.4 Sets partitions in combinatorial geometry

Evolution-based approaches (AlphaEvolve [6], OpenEvolve et.al)

have a broad area of applications not only for practical problems

(such as CAD reconstruction), but also for scientific problems. In

this paper we explore the appliance of OpenEvolve approach to

combinatorial geometry problems that potentially promised for

such evolutions and haven’t been considered before, for instance

as one of benchmarks in the paper [6]. One of the central prob-

lems in combinatorial geometry related to the Borsuk hypothesis

stated by K. Borsuk in 1933:

Borsuk hypothesis: can be any set with unit diameter 𝐴 ⊂ R𝑛

be divided into 𝑛 + 1 subsets of smaller diameter (less than 1) ?
This hypothesis has attracted a lot of attention from researchers

over the world, and was conjectured in .... Nowadays, this hypoth-

esis was conjectured started from 𝑛 = 64, i.e. for any 𝑛0 ≥ 𝑛 exists

such set in R𝑛0
that cant be divided into (𝑛0 + 1) parts of smaller

diameter. Saying about smaller dimensions (𝑛 < 63), the following

definition is especially sufficient:

Definition: Let 𝑏 (𝑛) be the minimum number of parts such

that any bounded subset 𝐴 ⊂ R𝑛
can be divided into 𝑏 (𝑛) parts of

smaller diameter. The quantity 𝑏 (𝑛) is called a Borsuk number.
Without loss of generality, we can consider only subsets𝐴 with

unit diameter (𝑑𝑖𝑎𝑚(𝐴) = 1) and its partitions into subsets of

smaller diameter. For small dimensions, precise values are known:

𝑏 (1) = 2, 𝑏 (2) = 3 and 𝑏 (3) = 4, however if 𝑛 ≥ 4 the Borsuk num-

ber can be greater than 𝑛+1 that makes this problem significantly

more complex. The next definition clarifies the optimization prob-

lem for partition-like tasks:

Problem: Let 𝑑𝑛,𝑘 ∈ R+ is the smallest number such that every

subset 𝐴 ⊂ R𝑛
of unit diameter can be divided into 𝑘 parts 𝐴 =

𝐴1 ⊔𝐴2 ⊔ · · · ⊔𝐴𝑘 such that ∀𝑖 ∈ {1, . . . , 𝑘} 𝑑𝑖𝑎𝑚(𝐴𝑖 ) ≤ 𝑑𝑛,𝑘 .

Currently, exact values of 𝑑𝑛,𝑘 have been obtain only for some

special cases and small dimensions. One of the way to find upper

bounds for these quantities relies on the Young theorem:

Theorem (H. Young, 1901): Every set𝐴 ∈ R𝑛
with unit diam-

eter can be covered by the ball 𝐵 ⊂ R𝑛
with radius 𝑟 =

√︁
𝑛

2𝑛+2 .
Definition: The set 𝑈 ⊂ R𝑛

called a universal covering set if
and only if an every subset ofR𝑛

with unit diameter can be covered

by𝑈 .

Hence, if we divided some universal covering set into 𝑛 parts

with diameters of all parts not more than 𝑑0 in 𝑘-dimensional case,

we prove that 𝑑𝑛,𝑘 ≤ 𝑑0. This fact allows to obtain upper bounds of

𝑑𝑛,𝑘 values via the partitioning of the universal covering sets into

parts of smaller diameter [9, 10].

Following the Young theorem, the ball with radius 𝑟 =
√︁

𝑛
2𝑛+2

is the universal covering set in 𝑛-dimensional case. From Young

theorem follows:

Corollary: The side length of a regular 𝑛-dimensional simplex

inscribed in the unit ball 𝐵𝑛 equals 𝜌𝑑 =

√︃
𝑛+1
2𝑛

.

Hereandafter, the unit ball denotes the ball with unit diameter,

i.e. with radius 𝑟 = 1/2.

3.4.1 Ball partitions into parts of smaller diameter. Despite

the existence of more complex universal covering systems, in our

initial experiment we firstly will explore the partitions of the unit

ball 𝐵𝑛 ⊂ R𝑛
centered in ®0 into (𝑛 + 1) parts of smaller diame-

ter. Each partition has been parametrized via the (𝑛 + 1) vectors
®𝑣1, . . . , ®𝑣𝑛+1 and the sphere partition is represented via polyhedral

cones centered in ®0 based on vectors ®𝑣1, . . . , ®𝑣𝑛+1. During evolution
process the program computed the diameter of each part and find

that maximum value among all parts. According to latter corol-

lary, the theoretical estimation of the maximum diameter (in case

of partition into 𝑛 parts) equals 𝜌𝑑 =

√︃
𝑛+1
2𝑛

, because one of 𝑛 parts

contains at least two simplex vertices according to Dirichlet prin-

ciple and each two regular simplex vertices distanced at 𝜌𝑑 (see

Figure 2).

This task has been chosen for this analysis, because it’s quite

simple to find the precise theoretical value of the estimated quan-

tity (𝜌𝑑 ), but at the same time it’s quite complex to find opti-

mal directions in 𝑛-dimensional case (directions corresponding to

regular 𝑛-dimensional simplex) via analytic optimizers in high-

dimensional setup. It’s expected that evolution-based approaches

find the optimal directions that result in the optimal value that will

be very closed to theoretical estimate.

Figure 2. Regular simplex based partition of unit ball in R3
into 4 parts

4 Results

4.1 Ascend experiments

Currently, we have prepared the virtual environment and tested

some basic code. To upload a local model to the environment, it is

required to download a model from the Hugging Face portal. We

faced a problemwith connection stability. Right now, we’ve solved

this problem and are preparing to upload a Qwen3-32B model to

Huawei’s OBS.

We was not able to run quantized Qwen3-32B models, AWQ

quantization requires libraries which only works on NVIDIA or

AMD GPU (IPEX backend or triton library). Unquantized mod-

els requires big amount of memory and it was hard to download,

archive and upload, besides that we was able to employ a variety

of models including Qwen3-32B through API.

4.2 CAD reconstruction

4.2.1 Zero-shot task As an initial approach to the CAD recon-

struction problem, we explored the zero-shot capabilities of LLMs,

including the instruction-following Qwen2.5-72b, the reasoning

model Qwen2.5-Coder-32b, and GPT-o4-mini. The goal of this ex-

periment was to assess in which cases OpenEvolve is necessary

and to explore whether zero-shot methods alone could provide a

correct solution.

Our initial results showed that vanilla shapes, like a basic box

or sphere, can be easily reproduced by zero-shot LLMs. Therefore,

we focused on the more complex figures (see Table 1) that zero-

shot methods struggled to reconstruct accurately.

The test results for the zero-shot approach are summarized in

SMILES 2025 5



SMILES Summer School Projects Proceedings

Table 3
Combined Scores for Different LLMs and Shapes

1
(values reported as𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑)

LLMs Type
Combined Score

Tube Gear Open box Ladder Spheres

Qwen2.5-72b Zero-Shot 4.950 ± 0.220 3.988 ± 1.402 4.138 ± 0.088 2.994 ± 1.579 3.128 ± 0.058

Qwen2.5-Coder-32b Zero-Shot 2.749 ± 2.905 0 3.802 ± 0.527 3.802 ± 0.122 2.830 ± 0.002

GPT-o4-mini Zero-Shot 5.651 ± 0.306 3.460 ± 1.840 3.777 ± 0.763 2.991 ± 1.623 2.435 ± 1.809

Qwen2.5-72b (t=0.7) 80%

Qwen2.5-72b (t=0.2) 20% OpenEvolve 6.728 ± 0.205 4.779 ± 0.982 5.199 ± 0.190 3.637 ± 1.035 6.528 ± 0.176
Qwen2.5-Coder-32b 50%

Qwen2.5-72b 50% OpenEvolve 6.682 ± 0.238 4.529 ± 1.021 5.426 ± 0.214 3.417 ± 1.118 5.227 ± 0.221

1
The shapes are described in Table 1.

Some evolutionary experiment visual results are presented in Appendix 6.7.

Table 3. Qwen2.5-Coder-32b failed to generate runnable code for

some figures, which led to errors and a zero score in the metrics.

In contrast, GPT-o4-mini successfully generated runnable code

across all tasks. Its performance, however, was uneven: it achieved

relatively strong results on the Tube shape (5.651± 0.306), outper-

forming Qwen2.5-72b (4.950± 0.220), but performed worse on the

Gear and Spheres shapes (3.460 ± 1.840 and 2.435 ± 1.809, respec-

tively), where Qwen2.5-72b achieved higher scores (3.988 ± 1.402

and 3.128±0.058). On the Open box and Ladder shapes, both mod-

els showed comparable performance, with GPT-o4-mini slightly

lagging behind in stability due to higher variance. These results

suggest that while GPT-o4-mini demonstrates a capacity to gener-

ate runnable code consistently, its effectiveness is strongly shape-

dependent and does not uniformly surpass Qwen2.5-72b in zero-

shot performance.

Figure 3. The Qwen2.5-72b model zero-shot results for the gear.

Figure 4. The GPT-o4-mini model zero-shot results for the gear.

Figure 5. The GPT-o4-mini model zero-shot results for the spheres.

In terms of visual similarity, Figure 3 shows the gear generated

by Qwen2.5-72b, while Figure 4 presents the gear generated by

GPT-o4-mini. The gear from theQwen2.5-72bmodel appears visu-

ally closer to the ground truth, that is also confirmed by the evalu-

ation metrics in the Table 3. On the other hand, for the spheres fig-

ure, the solution generated by GPT-o4-mini (Figure 5) looks more

accurate compared to the Qwen2.5-72b model results (Figure 6).

This is demonstrated by the combined score, which is higher for

GPT-o4-mini.

Overall, these zero-shot results highlight areas for improve-

ment, which we address using the OpenEvolve method, as de-

scribed in the next Section 4.2.2.

4.2.2 OpenEvolve We prepared the pipeline for CAD Recon-

struction task for the OpenEvolve as described in 3.3.4 and run

initial benchmark. After five iterations of the algorithm, an ideal-

match 3Dmodel with the maximum value of metrics was obtained

(Fig. 7, right). Fig. 8 shows the visualized program evolution pro-

vided by OpenEvolve.

The OpenEvolve method significantly improved the perfor-

mance of the models on the CAD reconstruction task. As shown

in Table 3, OpenEvolve consistently produced higher combined

scores for most complex shapes compared to the zero-shot ap-

proach. Specifically, the combined Qwen2.5-72b model configu-

ration achieved the best scores for the Tube, Gear, Ladder, and

Spheres figures, outperforming all other models, including GPT-

o4-mini. The combined score for the Spheres figure saw a par-

ticularly notable improvement of over 0.7 from the zero-shot re-

sult. Additionally, OpenEvolve successfully addressed the failures

of the Qwen2.5-72b and Qwen2.5-Coder-32b models, which failed

to generate runnable code for some shapes in the zero-shot tests.

The combination of Qwen2.5-Coder-32b and Qwen2.5-72b also

yielded strong results, achieving the highest combined score for

the Open box figure. This suggests that mixing different models

within the evolutionary loop can be an effective strategy, leverag-

ing the strengths of each model to produce better outcomes. Over-

Figure 6. The Qwen2.5-72b model zero-shot results for the spheres.

6 SMILES 2025



SMILES Summer School Projects Proceedings

all, these results confirm that the iterative, evolutionary process of

OpenEvolve is crucial for accurately reconstructing complex CAD

models, moving beyond the limitations of single-pass, zero-shot

methods. Visual results of some of these experiments are provided

in Appendix 6.7.

Figure 7. Example of built CAD meshes. Green model to the left - the

Ground Truth for the experiment, gray model in the middle - the CAD

mesh proposed by OpenEvolve on iteration 4, red model in the right - the

final perfect match CAD mesh proposed by OpenEvolve on iteration 5.

Figure 8. Program evolution graph for specific checkpoint during experi-

ment on the initial benchmark.

4.2.3 Analysis of Error Modes and Evolutionary Pathway
To understand the significant performance gap between zero-shot

generation and the OpenEvolve framework, we must analyze the

types of errors that occur in programmatic CAD modeling. These

errors can be broadly categorized into two types:

• Structural Errors: These are fundamental, topological mis-

takes where the core components or operations of the design

are incorrect. Examples include failing to create a hole, gen-

erating a solid block instead of an open box, or omitting a

key feature like the teeth on a gear. These errors represent a

misunderstanding of the object’s basic structure and cannot

be fixed by simply adjusting numbers.

• Parametric Errors: These occur when the model’s overall

structure is correct, but its dimensions, positions, or other

numerical attributes are inaccurate. Examples include a gear

with the correct number of teeth but the wrong radius, or a

hole that is correctly placed but has an incorrect diameter.

These errors can be fixed by tuning the parameters within

an already correct program structure.

Our analysis reveals that zero-shot LLMs frequently commit

parametric errors in case of easily describable models (e.g. Fig-

ures 3, 4 and 5). As seen in Figure 6, the zero-shot attempt by

Qwen2.5-72b on the ’Spheres’ task resulted in a both parametric

and structural failures. The model lacks distinct, correctly formed

additional sphere and a properly parametrized subtraction sphere.

This failure mode is common in single-pass generation, where

a single logical misstep in the program’s control flow leads to a

completely incorrect topology. It appears more frequently as the

complexity of the 3D models increases. Mostly it is caused by the

wrong translations of the model’s part in relation to other parts.

In some cases it is even impossible to construct the model. The

Qwen2.5-72b failed to construct the ’Ladder’ model.

The OpenEvolve framework excels precisely because its evolu-

tionary process creates a pathway to solve both types of errors in

sequence. As illustrated in Figure 9, the process unfolds in two

distinct phases:

1. Structural Discovery (Early Generations): In the initial

generations, the population of programs is highly diverse.

Most attempts contain structural errors, like shown in Fig-

ure 9a. However, through mutation and selection guided

by the evaluation metrics, the system tries to discover cor-

rect structural elements like in Figure 9b. Figure 9c shows a

critical "structural leap" where a mutation successfully intro-

duces the concept of cogs. Even though these cogs are para-

metrically incorrect (wrong position), their existence pro-

vides a massive improvement in the evaluation score. The

evolutionary search prioritizes this correct topology, ensur-

ing it becomes the foundation for future generations.

2. Parametric Refinement (Later Generations): Once a

structurally sound program template is established within

the population, the evolutionary search shifts its focus to

parametric optimization. The LLM, now prompted to make

small modifications to a high-quality parent program, gener-

ates variations that adjust dimensions. The program evolves

to have the correct position and shape of cogs. Guided by

the continuous feedback from the scoring function, most of

the later generations tries to fine-tune these values. It took

most of iterations to properly fix the position. The solution

converges on the ground truth, as shown in Figure 9d.

In summary, evolution provides a robust, two-stage search

mechanism that single-pass generation lacks. It first navigates

the vast and difficult space of program structures to find a viable

topology and then efficiently optimizes the parameters within that

structure. The feedback provided by the evaluator agent and ran-

dom mutations are main reasons for better performance on com-

plex design tasks in comparison to the simple one-shot approach.

4.3 Ball partitioning into parts of smaller diameter

Let 𝐵𝑛 be the n-dimensional ball centered at 𝑂 with radius 𝑟 = 1

2
.

We want to find optimal partition of this ball into parts of smaller

diameter. Formally, we estimate the quantity

𝑑𝑛 = sup

𝐴⊂R𝑛 ,𝑑𝑖𝑎𝑚 (𝐴)=1
inf{𝑥 ∈ R+ : ∃𝐴1, . . . , 𝐴𝑛+1 ⊂ R𝑛

: 𝐴1⊔𝐴2⊔

· · · ⊔𝐴𝑛+1 = 𝐵𝑛 and 𝑑𝑖𝑎𝑚(𝐴𝑖 ) ≤ 𝑥 ∀𝑖 ∈ {1, 2, . . . , 𝑛 + 1}}.

SMILES 2025 7



SMILES Summer School Projects Proceedings

1 # Simple disk is created
2 result = cq.Workplane("XY")
3 .circle (10).circle (40).extrude (20)
4

Listing (1) Structural Error: The initial program completely misses the

core concept of gear teeth. There was an attempt to generate it, but it was

unsuccessful.

(a) Iteration 1: Structural Error

1 # Loop fixed to add visible protrusions
2 for i in range (6):
3 # ... (code for a triangular wedge)
4

Listing (2) Protrusions improvement: Evolution tries to improve the

protrusions, it still structurally wrong.

(b) Iteration 2: Protrusions improvement

1 # Parameters closer but not correct
2 cog = cq.Workplane("XY")
3 .rect(20, 10)
4 .extrude(cog_height + 2)
5 .translate ((0, outer_radius +

cog_length / 2, -2))
6

Listing (3) Structural Leap: The proper cog structure is found, but

position (as parameter) need refinement.

(c) Iteration 16: Structural leap

1 # Final , correct parameters
2 .extrude(cog_height)
3 .translate ((0, outer_radius + cog_length / 2 -

2)) # proper insertion
4 # ... (rotation and union of cog and gear

models)
5

Listing (4) Converged Solution: Both structure and parameters match

the target, achieving a high score.

(d) Iteration 98: Converged Solution

Figure 9. Evolutionary Pathway for the Gear Shape, Demonstrating Correction of Structural and Parametric Errors. The evolutionary process

is shown in four stages. (a) Initial attempts often result in structural errors. (b) The process tries to fix the topology but make mistakes. (c) A key

structural leap introduces the correct topology, even with incorrect parameters. (d) Finally, the process converges to a solution that is both structurally

and parametrically correct.

8 SMILES 2025



SMILES Summer School Projects Proceedings

Figure 10. Comparison of the theoretical value for optimal partitions and

two experimental ways: via OpenEvolve and via the best partition over

multiple runs (multistart strategy).

The partition can be parametrized via 𝑛 + 1 points

𝐶1,𝐶2, . . . ,𝐶𝑛+1 ∈ 𝜕𝐵𝑛 located at the ball’s surface. If the

𝑂 ∉ conv(𝐶1, . . . ,𝐶𝑛+1), then the maximal diameter of partitions

based on 𝐶1, . . . ,𝐶𝑛+1 equals 1, else these points parametrized the

balls partitions into cones centered at 𝑂 of smaller diameter (the

construction of these partitions have been obtained from facets

of the above mentioned convex hull in R𝑛
. We apply OpenEvolve

approach to find the (𝑛 + 1) points on 𝜕𝐵𝑛 parametrized the

optimal ball’s partition and the goal is to minimize the maximum

over the diameters of the partition cones. As we mention in the

Methodology section, this value theoretically equals 𝑑𝑛 =

√︃
𝑛+1
2𝑛

and achieved on the regular simplex based construction (for

instance, regular triangle vertices in planar case or regular

tetrahedron in R3
). During this experiment we apply OpenEvolve

approach to find optimal balls partitions for each dimension from

2 to 9 separately. The results of the comparison of OpenEvolve

based estimations with theoretical results and Monte Carlo

sampling methods (best partition over 10000 samples of points

𝐶1,𝐶2, . . . ,𝐶𝑛+1 uniformly distributed on 𝜕𝐵𝑛) are presented at

the Figure 10. The prompt for this task has been provided at the

Appendix of this paper.

Interestingly to note, that experimental results coincides with

the theoretical estimations, and the model learns the optimal reg-

ular simplex based structure of partitions (Figure 11 illustrates the

regular simplex vertices that have been learned via this approach

in case of 𝑛 = 3). It’s important to highlight, that in the exper-

iment we slightly change the prompt to generalize our task and

apply it for 𝑛 = 13, then the program learns the optimal parti-

tion structure (vertices of regular simplex) for all dimension val-

ues from 𝑛 = 2 to 𝑛 = 13. This example shows the generalization

ability of evolution based approaches and highlights the promis-

ing way to use evolution-based approaches like OpenEvolve for

more complicated partition problems in the combinatorial geom-

etry. Particularly, it can be applied for the study of partitions of

other universal covering sets (not only the ball form Young’s the-

orem) into parts of smaller diameter and for other problems re-

Figure 11. Optimal partition of 3-dimensional ball with unit diameter into

4 parts based on the regular simplex. The red lines (segments between 𝑂

and𝐶1,𝐶2,𝐶3,𝐶4 indicates the partition cones edges.

lated to the Borsuk problem [1]. One of the main difficulties here

related to the complex structure of evaluation part of OpenEvolve

pipeline - for high-dimensional non-trivial universal covering sets

the computation of the diameter of partition sets is a hard prob-

lem, however this issue will be mitigated during further research

work on this topic.

5 Conclusion
The open-source implementation of AlphaEvolve, OpenEvolve,

proves to be a versatile and effective framework for complex opti-

mization tasks, outperforming single LLMs by iteratively refining

a population of solutions to systematically achieve more robust

outcomes. Our study successfully applies this LLM-driven evolu-

tionary search approach to a new domain: CAD reconstruction.

By doing so, we not only create a new benchmark for this spe-

cific problem but also demonstrate the broader potential of this

methodology for solving other complex challenges, such as com-

binatorial geometry problems.

References
[1] Karol Borsuk. “Drei Sätze über die n-dimensionale euklidische Sphäre”. In:

Fundamenta Mathematicae 20 (1933), pp. 177–190.

[2] Weiqiang Jin et al. A Comprehensive Survey on Multi-Agent Cooperative
Decision-Making: Scenarios, Approaches, Challenges and Perspectives. 2025.
arXiv: 2503.13415 [cs.MA]. url: https://arxiv.org/abs/2503.13415.

[3] Mohammad Sadil Khan et al. “Text2CAD: Generating Sequential CAD De-

signs from Beginner-to-Expert Level Text Prompts”. In: The Thirty-eighth An-
nual Conference on Neural Information Processing Systems. 2024. url: https:
//openreview.net/forum?id=5k9XeHIK3L.

[4] Mohammad Sadil Khan et al. “Text2cad: Generating sequential cad designs

from beginner-to-expert level text prompts”. In: Advances in Neural Informa-
tion Processing Systems 37 (2024), pp. 7552–7579.

[5] Maksim Kolodiazhnyi et al. cadrille: Multi-modal CAD Reconstruction with On-
line Reinforcement Learning. 2025. arXiv: 2505.22914 [cs.CV]. url: https:
//arxiv.org/abs/2505.22914.

[6] Alexander Novikov et al. AlphaEvolve: A coding agent for scientific and algo-
rithmic discovery. 2025. arXiv: 2506.13131 [cs.AI]. url: https://arxiv.
org/abs/2506.13131.

SMILES 2025 9

https://arxiv.org/abs/2503.13415
https://arxiv.org/abs/2503.13415
https://openreview.net/forum?id=5k9XeHIK3L
https://openreview.net/forum?id=5k9XeHIK3L
https://arxiv.org/abs/2505.22914
https://arxiv.org/abs/2505.22914
https://arxiv.org/abs/2505.22914
https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/2506.13131


SMILES Summer School Projects Proceedings

[7] Asankhaya Sharma. OpenEvolve: an open-source evolutionary coding agent.
2025. url: https://github.com/codelion/openevolve.

[8] Alexander Soifer. “The Hadwiger-Nelson Problem”. In: Open Problems in
Mathematics. 2016.

[9] A. D. Tolmachev and D. S. Protasov. “Covering Planar Sets”. In:DokladyMath-
ematics (2021). doi: 10.1134/S1064562421040141.

[10] A. D. Tolmachev, D. S. Protasov, and V. A. Voronov. “Coverings of planar and

three-dimensional sets with subsets of smaller diameter”. In: Discrete Applied
Mathematics 320 (Oct. 2022), pp. 270–281. doi: 10.1016/j.dam.2022.06.
016.

[11] Rundi Wu, Chang Xiao, and Changxi Zheng. “DeepCAD: A Deep Generative

Network for Computer-Aided DesignModels”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). 2021, pp. 6772–6782.

[12] Jenny Zhang et al. Darwin Godel Machine: Open-Ended Evolution of Self-
Improving Agents. 2025. arXiv: 2505.22954 [cs.AI]. url: https://arxiv.
org/abs/2505.22954.

6 Appendix

6.1 Inference Resources Details

6.1.1 Ascend TPU To experiment with local inference a remote

host with Huawei Ascend TPUs was provided. We used Huawei’s

ModelArts platform to develop and execute the inference work-

flow. ModelArts is a one-stop AI development platform providing

managed notebook, training, and deployment services support. In

particular, we created a ModelArts Notebook instance with the

Ascend-enabled image, giving us an interactive Python environ-

ment. This notebook instance came preconfigured with the nec-

essary Ascend drivers and frameworks. All models and data were

stored in Huawei’s cloud storage: we used Object Storage Service

(OBS) to host the model files. OBS provides scalable bucket stor-

age for larger model assets. We mounted these storage resources

into the notebook so that our model files could be loaded at run-

time. Importantly, since our work involves inference only, we did

not perform any training or fine-tuning on these models – we sim-

ply loaded them from storage into theAscend-accelerated runtime.

We ran all computations on a virtual machine with eight Ascend

Snt9B3 NPUs. Each Ascend Snt9B3 card provides 32 GB of high-

bandwidth memory, it gives up to 256 GB. This amount of high-

bandwidth memory provided opportunity to load fewmodels with

more than 70 billions parameters and a large context size. The host

node uses a 192-core ARM processor with 1.536 TB of RAM.

6.1.2 Yandex DataSphere GPU As an alternative we used a

Yandex DataSphere service for the same purposes. It offers up to

32 GB of VRAM which may be not enough for our experiments.

6.1.3 Inference API For quick experiments we employed

OpenRouter API, GPT4Free, and Mistral API. Initial experiments

included usage of DeepSeek R1 671B, mistral-small-latest, and

mistral-large-latest models. Finally, we applied GPT-o4-mini,

Qwen2.5-72b, and Qwen2.5-Coder-32b as backbone LLMs for our

experiments with OpenEvolve.

6.2 Dataset details

As outlined in Section 3.3.1, we used the Text2CAD dataset [4]

as our starting point. We later realized that we did not need the

Text2CAD reference code, because our experiments compare the

final 3D models rather than the code. Based on this, our dataset

includes (i) a short test description, example of which is shown

in Table 4, (ii) the figure name, and (iii) a Python script using the

trimesh library to recreate the ground-truth 3D model. In ad-

dition to figures taken from Text2CAD, we also created several

figures ourselves to cover missing cases.

Our dataset is available at link.

The original Text2CAD dataset is at link.

Table 4
Comparison of Prism CAD Model Descriptions

Initial Text2CAD Description

Create a new coordinate system with Euler angles set to 0 degrees for

the first 2 axes and -90 degrees for the third axis. Set the translation

vector to 0 for the first and third axes and 0.6666 units for the second

axis. Draw a 2-dimensional sketch on the first face. In this sketch,

start by drawing the first loop which consists of 11 lines. The first line

starts at coordinates (0, 0.3566) and ends at (0.0716, 0.1362). Continue

drawing the subsequent lines according to the specified coordinates

until the eleventh line, which connects back to the starting 0. After

completing the first loop, apply a scale factor of 0.75 to the entire 2-

dimensional sketch. Transform the scaled 2-dimensional sketch into 3

dimensions by rotating it using the same Euler angles and translating

it using the same translation vector. Extrude the transformed sketch

0.6666 units along the normal direction to create a solid body. The final

dimensions of the rounded cube base are approximately 0.75 units in

length, 0.7133 units in width, and 0.6666 units in height

Our Simplified Description

Prism with height 200mm with right 10-sided polygon base. Length of

one side of polygon is 20mm

6.3 OpenEvolve evaluator prompt for CAD Reconstruction

1 You a re an exp e r t in p a r ame t r i c 3D model ing us ing CadQuery and Python . Your t a s k

i s to wr i t e a Python f un c t i o n us ing the CadQuery l i b r a r y t h a t g en e r a t e s

a 3D model matching a r e f e r e n c e i n f o rma t i on about the shape as c l o s e l y as

p o s s i b l e .

2

3 Requ i rements :

4 1 . The code must use CadQuery p r im i t i v e s and op e r a t i o n s .

5 2 . The f u n c t i o n shou ld r e t u r n f i n a l CadQuery s o l i d o b j e c t (` cq . Workplane` with 3

D geometry ) .

6 3 . The s c r i p t must be e x e c u t a b l e in a s t anda rd Python environment with CadQuery

i n s t a l l e d ( no o the r packages ) .

7 4 . Remove a l l comments and d e s c r i p t i o n s from the s o l u t i o n code

8

9 You have a t e x t shape d e s c r i p t i o n with impor t an t i n f o rma t i on .

10

11 Here a r e d e s c r i p t i o n o f me t r i c s on which

12 the r e s u l t w i l l be e v a l u a t e d ( with r e s p e c t to o r i g i n a l o b j e c t ) :

13 − `iou` ( I n t e r s e c t i o n over Union ) measures the ov e r l a p between two meshes based

on t h e i r volume .

14

15 − `viou` ( Voxe l i z e d IoU ) measures the IoU on a v o x e l i z e d r e p r e s e n t a t i o n o f the

meshes

16

17 − `cd` ( I n v e r s e Chamfer D i s t an c e ) measures the ave rage squared d i s t a n c e between

n e a r e s t p o i n t s on the two mesh s u r f a c e s .

18 Concept : `1 − ( mean_d i s t ( P1 −> P2 ) ^2 + mean_d i s t ( P2 −> P1 ) ^2 )`
19

20 − `hd` ( I n v e r s e Hausdor f f D i s t an c e ) measures the maximum " worst − c a s e " d i s t a n c e

between the two s u r f a c e s . I t f i n d s the po i n t on one s u r f a c e f u r t h e s t from

any po i n t on the o the r . C a l c u l a t e d on 5000 sampled p o i n t s .

21 Concept : `1 − max ( max_d i s t ( P1 −> P2 ) , max_d i s t ( P2 −> P1 ) )`
22

23 − `wd` ( I n v e r s e Was s e r s t e i n D i s t an c e ) measures the minimum " c o s t " t o t r an s f o rm

one su r f a c e ' s p o i n t c l oud i n t o the o the r .

24 Concept : `1 − EMD( P1 , P2 )`
25

26 − `as` ( S u r f a c e Area S i m i l a r i t y ) compares the s c a l a r s u r f a c e a r e a o f two meshes .

27 Formula : `1 − | Area1 − Area2 | / max ( Area1 , Area2 )`
28

29 − ` i s ` ( I n e r t i a S i m i l a r i t y ) compares the moment o f i n e r t i a t en so r s , which

d e s c r i b e the mass d i s t r i b u t i o n and r o t a t i o n a l p r o p e r t i e s o f the o b j e c t s .

30 Formula : `1 − | | I n e r t i a 1 − I n e r t i a 2 | | / ( | | I n e r t i a 1 | | + | | I n e r t i a 2 | | ) `
31

32 Shape d e s c r i p t i o n :

33 A 80 x60x10 b l o ck ( l e ng t h x width x he i gh t ) with c e n t r a l ho l e o f r a d i u s 22

6.4 OpenEvolve initial program for CAD Reconstruction

10 SMILES 2025

https://github.com/codelion/openevolve
https://doi.org/10.1134/S1064562421040141
https://doi.org/10.1016/j.dam.2022.06.016
https://doi.org/10.1016/j.dam.2022.06.016
https://arxiv.org/abs/2505.22954
https://arxiv.org/abs/2505.22954
https://arxiv.org/abs/2505.22954
https://drive.google.com/drive/folders/1jT_mGLyVD9D_O5fOK-qHEORWJVTqWPma?usp=sharing
https://huggingface.co/datasets/SadilKhan/Text2CAD/tree/main/text2cad_v1.0


SMILES Summer School Projects Proceedings

1 # EVOLVE−BLOCK−START

2 " " " Func t i on t h a t b u i l d s 3D f i g u r e by t e x t d e s c r i p t i o n " " "

3

4 impor t cadquery as cq

5

6

7 de f b u i l d _ 3 d _ f i g u r e ( ) −> cq . Workplane :

8 r e t u r n cq . Workplane ( )

9

10

11 # EVOLVE−BLOCK−END

6.5 OpenEvolve evaluator prompt for the ball partition

1 You a re an exp e r t in c omb i n a t o r i a l geometry and Python .

2 Your t a s k i s to wr i t e a Python f un c t i o n t h a t g en e r a t e s an op t ima l k− p a r t s

p a r t i t i o n o f a n− d imens i ona l b a l l o f g iven r a d i u s

3 where k = ( n + 1 ) , so as to p a r t i t i o n the b a l l i n t o ( n + 1 ) c o n i c a l r e g i o n s

whose maximal d i ame t e r i s as sma l l as p o s s i b l e .

4 You can change f un c t i o n in a l l p o s s i b l e ways as you want as long as i t f i t s

r e qu i r emen t s and c o n s t r a i n t s and improves e v a l u a t i o n me t r i c s .

5

6 Requ i rements :

7 1 . The code must use only s t anda rd Python and NumPy p r im i t i v e s and

o p e r a t i o n s .

8 2 . I t must r e t u r n a NumPy a r r ay o f shape ( k_po in t s , n_dim ) whose rows a r e

the c o o r d i n a t e s o f the k_po i n t s p o i n t s on the sphere o f r a d i u s `r ad iu s ` .

9

10 Con s t r a i n t s :

11 − Po i n t s must l i e on the s u r f a c e o f the n− d imens i ona l b a l l o f the

12 g iven `r ad iu s ` .

13 − The po i n t s d e f i n e a convex h u l l . I f the c e n t e r o f the b a l l l i e s i n s i d e

t h i s convex hu l l , t he c o n f i g u r a t i o n i s i n v a l i d ( v a l i d i t y = 0 ) .

14 − The p a r t i t i o n i s formed by cones whose apex i s a t the c e n t e r o f the b a l l

and whose ba s e s a r e the f a c e t s ( t r i a n g l e s ) o f the convex h u l l formed by

the p o i n t s .

15

16 Ev a l u a t i o n me t r i c s ( computed e x t e r n a l l y ) :

17 − `v a l i d i t y ` : 1 . 0 i f the shape o f the po i n t c l oud matches the r equ i r emen t s (

s e e above ) , o t h e rw i s e 0 . 0 .

18 − `max_diam ` : t he maximum d iame t e r among a l l c o n i c a l r e g i o n s ( i . e . , t he

l a r g e s t d i s t a n c e between any p a i r o f p o i n t s in each p a r t i t i o n s cone ) ,

t h i s v a l u e cannot exceed the b a l l d i ame t e r . i t i s n e c e s s a r y to minimize

t h i s va l u e .

19 − ` t a r g e t _ r a t i o ` : r a t i o o f the t h e o r e t i c a l minimum p o s s i b l e d i ame t e r to the

a c t u a l `max_diam` ( h i ghe r i s b e t t e r , capped a t 1 ) .

20 − `combined_score ` : v a l i d i t y x t a r g e t _ r a t i o ( your main o p t im i z a t i o n

o b j e c t i v e ) .

21

22 Your goa l :

23 Maximize the `combined_score ` , which i s equa l to ` t a r g e t _ r a t i o ` i f

24 the pack ing i s v a l i d and ze ro o the rw i s e . Max_diam shou ld be minimize

6.6 OpenEvolve initial program for the ball partition

1 # EVOLVE−BLOCK−START

2 " " " Cons t ruc to r −based the p a r t i t i o n o f n− d imens i ona l sphe re

3 i n t o ( n + 1 ) p a r t s o f sma l l e r d i ame t e r " " "

4

5 impor t numpy as np

6 from s c i p y . s p a t i a l impor t ConvexHull , d i s t a n c e

7 impor t m a t p l o t l i b . pyp l o t as p l t

8 from i t e r t o o l s impor t comb ina t i ons

9 impor t s c i p y . s t a t s as sps

10

11

12 de f c on s t r u c t _ p a c k i n g ( n_dim , k_po in t s , r a d i u s = 0 . 5 ) :

13 " " "

14 Cons t ru c t a random p a r t i t i o n

15

16 Re tu rns :

17 p o i n t s

18 " " "

19 # I n i t i a l i z e p o i n t s v i a random sampl ing from the uni form sphere d i s t r i b u t i o n

20

21 p o i n t s = sps . uni form ( l o c = −1 , s c a l e =2 ) . r v s (

22 ( k_po in t s , n_dim )

23 )

24 p o i n t s = p o i n t s / np . l i n a l g . norm ( po in t s , a x i s =1 , keepdims=True )

25 p o i n t s ∗= r a d i u s

26

27 r e t u r n p o i n t s

28

29 # EVOLVE−BLOCK−END

6.7 Evolutionary experiment visual results

Figure 12. OpenEvolve evolution results for the gear figure using the

Qwen2.5-72b model with each stage labeled by its iteration number be-

low.

Figure 13. OpenEvolve evolution of the gear figure generated by alternat-

ing between Qwen2.5-72b and Qwen2.5-Coder-32b (50% each), with each

stage annotated by its iteration number below.

Figure 14. OpenEvolve evolution results for the spheres figure using the

Qwen2.5-72b model with each stage labeled by its iteration number below.

Figure 15. OpenEvolve evolution of the spheres figure generated by al-

ternating between Qwen2.5-72b and Qwen2.5-Coder-32b (50% each), with

each stage annotated by its iteration number below.

Figure 16. OpenEvolve evolution of the tube figure generated by alternat-

ing between Qwen2.5-72b and Qwen2.5-Coder-32b (50% each), with each

stage annotated by its iteration number below.

SMILES 2025 11



SMILES Summer School Projects Proceedings

Figure 17. OpenEvolve evolution of the ladder figure generated by al-

ternating between Qwen2.5-72b and Qwen2.5-Coder-32b (50% each), with

each stage annotated by its iteration number below.

Figure 18. OpenEvolve evolution of the open box figure generated by al-

ternating between Qwen2.5-72b and Qwen2.5-Coder-32b (50% each), with

each stage annotated by its iteration number below.

12 SMILES 2025


	Introduction
	Hypothesis

	Background & Literature Review
	Methods
	OpenEvolve agent
	Key components
	Evolution process

	Inference Resources
	CAD Reconstruction
	Dataset
	Scoring and Metrics
	Zero-shot baseline
	OpenEvolve Implementation

	Sets partitions in combinatorial geometry
	Ball partitions into parts of smaller diameter.


	Results
	Ascend experiments
	CAD reconstruction
	Zero-shot task
	OpenEvolve
	Analysis of Error Modes and Evolutionary Pathway

	Ball partitioning into parts of smaller diameter

	Conclusion
	Appendix
	Inference Resources Details
	Ascend TPU
	Yandex DataSphere GPU
	Inference API

	Dataset details
	OpenEvolve evaluator prompt for CAD Reconstruction
	OpenEvolve initial program for CAD Reconstruction
	OpenEvolve evaluator prompt for the ball partition
	OpenEvolve initial program for the ball partition
	Evolutionary experiment visual results


