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Abstract

Recent advances in automated discovery, exemplified by
Google’s AlphaEvolve framework, demonstrate the effec-
tiveness of integrating large language models (LLMs) with
evolutionary search for complex optimization tasks. Al-
phaEvolve sets a new standard in this domain through
candidate code generation and rigorous evaluation mecha-
nisms. In this study, we run and analyze OpenEvolve agent,
the open-source implementation of AlphaEvolve. We fur-
ther extend our analysis to the applied Computer-Aided De-
sign (CAD) reconstruction problem, demonstrating the ap-
proach’s versatility and establishing a comprehensive ex-
perimental benchmark for this task. Besides, we explore
the possibility of the AlphaEvolve appliance to the com-
binatorial geometry problems. Our source-code is avail-
able at GitHub: https://github.com/crogs-foundation/
openevolve-smiles25.

Index Terms: AlphaEvolve, OpenEvolve, LLM, CAD reconstruc-
tion, combinatorial geometry

1 Introduction

CAD is a cornerstone of modern engineering and manufacturing,
enabling the creation and modification of intricate 3D models. Tra-
ditionally, this has been a manual, labor-intensive process requir-
ing specialized software and expertise. However, the rise of LLMs
and advanced code generation techniques has opened up new pos-
sibilities for automating CAD model creation from natural lan-
guage descriptions. This research explores an innovative approach
to this problem by adapting AlphaEvolve, an evolutionary agentic
framework, for the CAD Reconstruction task. We use OpenEvolve
agent [7]], an open-source implementation of AlphaEvolve, to gen-
erate and optimize CAD models from textual prompts.

This study focuses on a specific and challenging aspect of CAD:
translating abstract, text-based descriptions into precise and man-
ufacturable 3D models. While traditional LLMs have shown some
success in this domain through a process known as zero-shot gen-
eration (creating a model from a single prompt), they often strug-
gle with complex geometries, precise dimensions, and combinato-
rial operations. Our approach posits that an evolutionary frame-
work can systematically overcome these limitations by iteratively
refining and evolving generated code. By applying the principles
of evolutionary computation, the OpenEvolve framework can not
only produce high-quality solutions but also explore a wide, di-
verse range of valid designs, leading to more robust and accurate
results than those achieved by a one-off, zero-shot approach. Fur-
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Figure 1. Overview of AlphaEvolve framework

thermore, the framework’s adaptability is demonstrated by its ap-
plication to combinatorial geometry problems, a class of tasks that
involve finding optimal configurations from a finite set of geomet-
ric objects, such as set partitioning or tiling.

1.1 Hypothesis

This work explores the hypothesis that the AlphaEvolve agent
[6], implemented within the OpenEvolve framework [7], can be
adapted to the CAD Reconstruction task and other applied do-
mains, achieving robust performance that surpasses the zero-
shot capabilities of state-of-the-art LLMs or task-specific base-
lines. Building upon prior research on AlphaEvolve applications,
this study focuses on executing and analyzing OpenEvolve—an
open-source implementation of AlphaEvolve, with the goal of
contributing to the CAD Reconstruction task and improving
the framework’s core components where possible. The CAD
experiments involve benchmarking on standard datasets (e.g.,
Text2CAD, DeepCAD) using metrics such as Chamfer Distance,
Intersection over Union, Invalidity Ratio, and custom evaluation
criteria. Additionally, the applicability of the AlphaEvolve frame-
work to combinatorial geometry problems is explored.

2 Background & Literature Review

The field of Al-driven design and generation has advanced signif-
icantly, especially with large language models (LLMs) and evolu-
tionary algorithms. A key development is AlphaEvolve, an evo-
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lutionary coding agent that uses LLMs for general-purpose al-
gorithm discovery and optimization [6]. AlphaEvolve employs
multiple LLMs to generate diverse code solutions, which are then
refined through an evolutionary process. This method has suc-
ceeded in complex tasks like data center scheduling, AT model
training, and hardware design, showing its ability to evolve en-
tire codebases rather than just single functions.

This approach fits into the broader framework of multi-agent
systems (MAS), where autonomous agents work together to solve
problems [2]]. Another related concept is the Darwin Gédel Ma-
chine (DGM), a self-improving system that updates its own code,
representing progress in open-ended evolution [[12]. However,
DGM has a complex structure and lacks open-source implementa-
tions, while AlphaEvolve offers accessible tools (e.g., OpenEvolv
OpenAlpha_Evolvﬂ.

The CAD Reconstruction problem, converting inputs like text
or point cloud into CAD model, is an important challenge in en-
gineering. What is more crucial in industry, is to recover a mod-
eling script from an existing mesh file of a 3D object, enabling
further refinement, parametric control, or iterative modification
of the model. This also called CAD reverse engineering prob-
lem, which goal is to reconstruct of boundary representation (B-
Rep). Standard datasets like DeepCAD and Text2CAD have sup-
ported progress by providing construction sequences and text de-
scriptions [11]], [3]. A recent breakthrough is CADrille, a multi-
modal model that fine-tunes an LLM using reinforcement learning,
achieving top results by optimizing both geometric accuracy and
code validity [5]. However, CADrille depends on a single LLM’s
knowledge, which may limit robustness and creativity. Evolution-
ary methods like AlphaEvolve could help explore a wider solution
space, leading to more diverse and validated outcomes.

Evolution-based approaches for large language models (LLMs),
including AlphaEvolve and its open-source implementation
OpenEvolve, provide powerful tools for discovering structures
or objects with desirable properties when their “quality” can be
quantified through metrics that depend monotonically on their
underlying characteristics. This makes LLM-driven evolutionary
methods particularly promising for problems in combinatorial ge-
ometry, which studies geometric objects with combinatorial con-
straints—such as maximizing edge/vertex counts in graphs, find-
ing optimal partitions or coverings, and analyzing graph config-
urations. The key idea involves efficiently verifying constrained
objects through computable metrics (e.g., set diameter lengths,
graph invariants, etc.). In this work, we explore the application
of AlphaEvolve to the problem of partitioning sets into subsets of
smaller diameter. This task is deeply connected to fundamental
questions in combinatorial geometry, including the Borsuk conjec-
ture 1] and the Hadwiger—Nelson problem [8].

Specifically, we consider partitioning the n-dimensional unit-
diameter ball (i.e., a ball of radius r = 1/2) into (n + 1) subsets
while minimizing the maximum diameter among them. Theoret-
ically, optimal bounds for such partitions can be derived from a
regular simplex inscribed in the boundary of the unit ball. Our
experiments evaluate the effectiveness of evolutionary methods
for this partition task and compare computational results against
known theoretical values. Although solving this problem does not
produce new bounds for combinatorial geometry, it serves as an

'https://github.com/codelion/openevolve
2 https: //github.com/shyamsaktawat/OpenAlpha_Evolve

important benchmark for evolutionary approaches in this domain
and lays the groundwork for future research.

3 Methods

3.1 OpenEvolve agent

The AlphaEvolve is an evolutionary agentic framework to gener-
ate a state-of-the-art solutions for a user-defined task, as depicted
in Figure [1] Basically it uses two agents to generate a code and
to perform an evaluation and feedback generation. Original im-
plementation employed Gemini 2.0 Flash and 2.0 Pro versions re-
spectively. OpenEvolve is an open-source implementation of the
AlphaEvolve. It also proposes additional improvements to the Al-
phaEvolve, for example, it allows to employ any number of open-
source models as evaluators using local inference and/or APIs.

3.1.1 Key components To initiate the evolutionary process us-
ing the OpenEvolve framework, three key components must be
defined: the initial program, the evaluator, and the configura-
tion. The initial program typically consists of a text file containing
a code snippet written in any supported programming language
that serves as the starting point for evolutionary improvement via
OpenEvolve. The evaluator is a Python script that assesses the
quality of candidate programs using user-defined evaluation met-
rics. These metrics are designed such that higher values corre-
spond to better performance, guiding the evolutionary algorithm
toward more optimal solutions.

The configuration file plays a central role by specifying criti-
cal parameters for the evolutionary task. It includes the hyperpa-
rameters of the evolutionary algorithm, settings for the agents for
code generation, the number of evolutionary iterations, and a sys-
tem prompt that provides high-level instructions for the intended
CAD model generation. This modular design allows OpenEvolve
to be adapted to a wide range of code synthesis and optimization
tasks, including the refinement and evolution of CAD modeling
scripts.

3.1.2 Evolution process OpenEvolve leverages the MAP-Elites
algorithm as its core evolutionary engine to achieve a balance be-
tween performance optimization and behavioral diversity. MAP-
Elites is a quality-diversity algorithm that maintains a structured
archive of elite solutions across a discretized feature space, allow-
ing the system to simultaneously explore a broad range of solution
types while refining high-performing individuals. In OpenEvolve,
the feature space is defined by interpretable dimensions such as
program complexity and functional diversity, though it can be ex-
tended to task-specific metrics. This structured search encour-
ages the discovery of not only top-performing CAD programs but
also diverse and creative alternatives. The framework supports
island-based evolution, where multiple sub-populations (or is-
lands) evolve in parallel with periodic migration, promoting cross-
fertilization of ideas and preventing premature convergence.

3.2 Inference Resources

For our local inference experiments, we used a mix of special-
ized hardware and cloud services. Our main resources provided
by school organizers included Huawei’s ModelArts with Ascend
TPUs and a Yandex DataSphere GPU service. We also used the
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Shapes used in the current research
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Figure name

Picture

Text description

Tube

Gear

Open Box

Ladder

Spheres

4
o
9
®

A tall vertical cylinder (116mm diameter, 200mm height) is partially subtracted by a smaller offset
cylinder (66mm diameter, 200mm height) in the center of the cylinder.

Gear wheel: inner radius of 10 mm, outer radius of 40 mm, thickness of 20 mm, with 6 rectangular
cogs. The cogs are as thick as the gear, protruding 10 mm outwards and 20 mm wide. The cogs
are inserted 2 mm into the gear body.

A box with a length of 150mm, a width of 100mm, and a bottom thickness of 10mm. The walls
are 40mm high. The walls along the length have a thickness of 15mm, and the walls along the
width have a thickness of 30mm.

The resulting object is a solid, monolithic block measuring 60 mm wide, 80 mm high, and 50 mm
deep. It has a two-step profile on its front face composed of 40 mm risers and 30 mm treads. The
block is bisected by a full-width planar cut on its right side that connects the top-back edge to the
bottom-front edge, creating a new face angled at approximately 58 degrees relative to the base.

A large sphere with a radius of 100mm is modified by subtracting a smaller sphere (radius 80mm)
shifted 20mm up and 70mm left from the center. Another small sphere (radius 50mm) touches
the bottom of the large sphere from the outside.

OpenRouteﬂ GPT4Freeﬂ and Mistral Aﬂ for quicker tests. For a
complete list of all the hardware and services, see Appendix[6.1]

3.3 CAD Reconstruction

3.3.1 Dataset For our 3D CAD reconstruction task, we used the
Text2CAD dataset [4]] , which consists of pairs of natural language
descriptions and corresponding Python code that uses the Cad-
Query library to generate precise 3D models. Each sample includes
a detailed textual explanation of the object’s dimensions, shape,
and geometric operations, along with the Python code required to
model it.

Along with each description, the corresponding script provided
in the dataset serves as the ground truth and is used for evaluation.
We compare the 3D model produced by the LLM-generated script
against the ground truth model by rendering both and computing
similarity metrics, presented in the Section[3:3.2]

For our test set, we selected five shapes — tube, gear, open box,
ladder, and spheres (see Table [I). These shapes were intention-
ally chosen to represent varying levels of complexity: the tube is
relatively simple, while the ladder and spheres more detailed and
complex geometric descriptions. This progression allowed us to
evaluate how well OpenEvolve performs across different difficulty
levels.

Although the original descriptions in the dataset are highly de-
tailed, we have decided to modify them to better suit the needs
of our specific task. Rather than using full text description, we ab-
stracted them to include only the key geometric information—such

3 https://openrouter.ai/
4 https://github.com/xtekky/gpt4free
5 https://mistral.ai/
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as the overall shape, dimensions, and main features. Despite the
simplification, the modified descriptions still provide all the essen-
tial details needed for the model to correctly infer the modeling
procedure. The main motivation for description simplification is
to make the OpenEvolve approach practical for real-world use. In
reality, users are unlikely to provide highly detailed, fine-grained
descriptions, even though such detail would make the task easier
for the language model. Table[d]shows original description for the
10-sided polygon prism and its simplified version.

3.3.2 Scoring and Metrics To quantitatively evaluate the sim-
ilarity between a predicted mesh (M,.¢q) and its corresponding
ground-truth mesh (M), we compute a comprehensive set of ge-
ometric and structural metrics. To ensure scale and position in-
variance, all meshes are first normalized: they are centered at the
origin and uniformly scaled to fit within a unit cube. This nor-
malization is crucial as it provides a canonical space for compari-
son and ensures our distance-based metrics are well-behaved. The
metrics are organized into three distinct categories:

Volumetric: These metrics assess the overlap in 3D space.

« Intersection over Union (IoU) is a standard metric that mea-
sures the ratio of the intersection volume to the union vol-
ume of the two meshes. It provides a highly accurate mea-
sure of volumetric overlap but can be computationally ex-
pensive and sensitive to non-watertight meshes

Voxelized Intersection over Union (VIoU) serves as a robust and
efficient approximation of IoU. To compute it, we voxelize
both meshes into a 64 X 64 X 64 grid and calculate the IoU on
the resulting binary voxel representations. This approach is
more resilient to topological errors in the input meshes and
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Table 2

Evaluation metrics with corresponding short names (aliases) and formulae. My, eq and My, are the predicted and ground-truth meshes. Py,cq and Py, are

point clouds sampled from their respective surfaces.

Metric Alias  Category Formula
. . . . vol(Mp, e qNMgt)
Intersection over Union iou Volumetric VOl Vpy eqUMge)
. . . |Vpred ﬂVg[\ . .
Voxelized IoU viou  Volumetric w—v—» Where V is the set of occupied voxels.
VpredYVgt|
Chamfer Distance (Similarity) cd Point-Based 1- % (W erppred minyep,, [|x — yllg + \T;H Zyepgt minxeppred ly - x\l%)
Hausdorff Distance (Similarity) hd Point-Based 1 — max (SupXEPpred infyep,, [lx = yll2, SUPycp,, infxEPpred [ly — x||2)
Wasserstein Distance (Similarity) — wd Point-Based 1 — EMD? (Ppreds Pgr), computed with a squared Euclidean cost matrix.
T |Area(My, ¢ q) —Area(Mge )|
Area Similarity as Property-Based ~ Rrea(Myy o) FArea(Mgs)
e . Hprea—Igtllp . . . . .
Inertia Similarity is Property-Based 1 - , where I is the inertia tensor and || - || is the Frobenius norm.

MpreallF+lligellF

significantly faster

Point-Based: These metrics evaluate similarity by comparing
point clouds sampled from the mesh surfaces. For each metric, a
distance d(Ppreq, Py;) is first computed between the point cloud
Pyrea sampled from My, .q and Py, from My,. Since all meshes are
normalized to a unit cube, the distances are bounded. We convert
this distance d into a similarity score s € [0, 1] via the transforma-
tion s = 1 — d, where a score of 1 indicates perfect similarity.

« Chamfer Distance (CD) measures the average squared dis-
tance from each point in one cloud to its nearest neighbor
in the other. We sample N = 5000 points from each mesh for
this calculation. It provides a good overall measure of surface
alignment.

« Hausdorff Distance (HD) measures the maximum distance be-
tween the two point clouds, effectively identifying the worst-
case mismatch. This makes it sensitive to outliers and sig-
nificant geometric deviations. It is computed on the same
N = 5000 point samples.

« Wasserstein Distance (WD), also known as the Earth Mover’s
Distance (EMD), quantifies the minimum cost required to
transform one point distribution into the other. We compute
the squared EMD using a squared Euclidean cost matrix be-
tween point clouds of size N = 1000. This metric is partic-
ularly effective at capturing structural differences and is less
sensitive to small misalignments than CD.

Property-Based: These metrics compare intrinsic physical or
geometric properties of the meshes.

« Area Similarity (AS) compares the total surface area of the
two meshes, calculated as a normalized similarity score
based on their relative difference.

« Inertia Similarity (IS) compares the 3D shapes’ mass distri-
bution by calculating the similarity between their moment
of inertia tensors. The similarity is defined as one minus the
normalized Frobenius norm of the difference between the
tensors, providing a descriptor of rotational symmetry and
mass distribution.

Table [2| provides a summary of all metrics, their short names,
and their mathematical formulations. Combined score — overall
score — is computed as sum of the seven described metrics. As

all the described metrics are in [0, 1] range, the combine score 7.0
corresponds to a perfect sahpes match, while 0.0 — to total mis-
match.

3.3.3 Zero-shot baseline To validate the applicability of
OpenEvolve to CAD reconstruction tasks, we conducted a series
of preliminary experiments using canonical test cases. The de-
signed 3D model descriptions was inputed to the selected open-
source models Qwen2.5-72b, Qwen2.5-Coder-32b, and closed-
source GPT-04-mini.

3.3.4 OpenEvolve Implementation Based on provided exam-
ple runs, we implemented the core components of our reconstruc-
tion framework, adapting them to generate parametric CAD code.
As an initial benchmark, we evaluated the reconstruction of a sim-
ple geometric shape—box with a hole (Figure/7] left).

The evolutionary search was configured with 100 iterations, a
choice made to strike a balance between available time and achiev-
ing meaningful performance results. The remaining parameters,
including a population size of 50 and 3 parallel islands, were set
by default as per the MAP-Elites algorithm. Consistent with the
original OpenEvolve setup, two large language models were em-
ployed for code generation: mistral-small-latest (assigned to 80%
of the population) and mistral-large-latest (20%). This mixture of
models enabled a balance between fast exploratory sampling and
higher-quality code generation, contributing to population diver-
sity and search efficiency.

To run OpenEvolve, we constructed an evaluator prompt and
an initial program to evolve, which are presented in the Appendix
[6-2]Jand Appendix[6.3]respectively. The evaluator prompt was care-
fully designed to provide a comprehensive and unambiguous eval-
uation framework by containing a role, requirements, metrics de-
scription, and task description. This structure guides the evaluator
toward a consistent assessment, while the initial program, a very
simple CadQuery shape, provides a foundational yet flexible start-
ing point for the evolutionary process to explore a broad range of
design solutions.

SMILES 2025



3.4 Sets partitions in combinatorial geometry

Evolution-based approaches (AlphaEvolve [6], OpenEvolve et.al)
have a broad area of applications not only for practical problems
(such as CAD reconstruction), but also for scientific problems. In
this paper we explore the appliance of OpenEvolve approach to
combinatorial geometry problems that potentially promised for
such evolutions and haven’t been considered before, for instance
as one of benchmarks in the paper [[6]. One of the central prob-
lems in combinatorial geometry related to the Borsuk hypothesis
stated by K. Borsuk in 1933:

Borsuk hypothesis: can be any set with unit diameter A C R"*
be divided into n + 1 subsets of smaller diameter (less than 1) ?

This hypothesis has attracted a lot of attention from researchers
over the world, and was conjectured in .... Nowadays, this hypoth-
esis was conjectured started from n = 64, i.e. for any ny > n exists
such set in R™ that cant be divided into (ng + 1) parts of smaller
diameter. Saying about smaller dimensions (n < 63), the following
definition is especially sufficient:

Definition: Let b(n) be the minimum number of parts such
that any bounded subset A ¢ R” can be divided into b(n) parts of
smaller diameter. The quantity b(n) is called a Borsuk number.

Without loss of generality, we can consider only subsets A with
unit diameter (diam(A) = 1) and its partitions into subsets of
smaller diameter. For small dimensions, precise values are known:
b(1) =2,b(2) =3 and b(3) = 4, however if n > 4 the Borsuk num-
ber can be greater than n + 1 that makes this problem significantly
more complex. The next definition clarifies the optimization prob-
lem for partition-like tasks:

Problem: Let d, ;. € R, is the smallest number such that every
subset A € R" of unit diameter can be divided into k parts A =
AjUAyU - UAgsuchthatVie {1,...,k} diam(A;) < dy.

Currently, exact values of d,, x have been obtain only for some
special cases and small dimensions. One of the way to find upper
bounds for these quantities relies on the Young theorem:

Theorem (H. Young, 1901): Every set A € R” with unit diam-
eter can be covered by the ball B ¢ R” with radius r = /5.

Definition: The set U ¢ R”" called a universal covering set if
and only if an every subset of R” with unit diameter can be covered
by U.

Hence, if we divided some universal covering set into n parts
with diameters of all parts not more than dj in k-dimensional case,
we prove that d,, ;. < dy. This fact allows to obtain upper bounds of
dp k values via the partitioning of the universal covering sets into
parts of smaller diameter [9}/10].

Following the Young theorem, the ball with radius r = /5.5

is the universal covering set in n-dimensional case. From Young
theorem follows:
Corollary: The side length of a regular n-dimensional simplex

n+l
2n °

Hereandafter, the unit ball denotes the ball with unit diameter,
i.e. with radius r = 1/2.

inscribed in the unit ball B, equals pg =

3.4.1 Ball partitions into parts of smaller diameter. Despite
the existence of more complex universal covering systems, in our
initial experiment we firstly will explore the partitions of the unit
ball B, c R" centered in 0 into (n + 1) parts of smaller diame-
ter. Each partition has been parametrized via the (n + 1) vectors
01, . .., Un+1 and the sphere partition is represented via polyhedral

SMILES 2025
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cones centered in 0 based on vectors U1, - . ., Up+1- During evolution
process the program computed the diameter of each part and find
that maximum value among all parts. According to latter corol-
lary, the theoretical estimation of the maximum diameter (in case

n+1
2n >

contains at least two simplex vertices according to Dirichlet prin-
ciple and each two regular simplex vertices distanced at pg (see
Figure .

This task has been chosen for this analysis, because it’s quite
simple to find the precise theoretical value of the estimated quan-
tity (pgq), but at the same time it’s quite complex to find opti-
mal directions in n-dimensional case (directions corresponding to
regular n-dimensional simplex) via analytic optimizers in high-
dimensional setup. It’s expected that evolution-based approaches
find the optimal directions that result in the optimal value that will
be very closed to theoretical estimate.

of partition into n parts) equals pg = because one of n parts

Figure 2. Regular simplex based partition of unit ball in R® into 4 parts

4 Results
4.1 Ascend experiments

Currently, we have prepared the virtual environment and tested
some basic code. To upload a local model to the environment, it is
required to download a model from the Hugging Face portal. We
faced a problem with connection stability. Right now, we’ve solved
this problem and are preparing to upload a Qwen3-32B model to
Huawei’s OBS.

We was not able to run quantized Qwen3-32B models, AWQ
quantization requires libraries which only works on NVIDIA or
AMD GPU (IPEX backend or triton library). Unquantized mod-
els requires big amount of memory and it was hard to download,
archive and upload, besides that we was able to employ a variety
of models including Qwen3-32B through APL

4.2 CAD reconstruction

4.2.1 Zero-shot task As an initial approach to the CAD recon-
struction problem, we explored the zero-shot capabilities of LLMs,
including the instruction-following Qwen2.5-72b, the reasoning
model Qwen2.5-Coder-32b, and GPT-04-mini. The goal of this ex-
periment was to assess in which cases OpenEvolve is necessary
and to explore whether zero-shot methods alone could provide a
correct solution.

Our initial results showed that vanilla shapes, like a basic box
or sphere, can be easily reproduced by zero-shot LLMs. Therefore,
we focused on the more complex figures (see Table |1)) that zero-
shot methods struggled to reconstruct accurately.

The test results for the zero-shot approach are summarized in
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Table 3

Combined Scores for Different LLMs and Shapes! (values reported as mean + std)

Combined Score

LLMs Type
Tube Gear Open box Ladder Spheres

Qwen2.5-72b Zero-Shot 4.950 + 0.220 3.988 + 1.402 4.138 +0.088 2.994 £+ 1.579 3.128 £ 0.058
Qwen2.5-Coder-32b Zero-Shot 2.749 £+ 2.905 0 3.802 + 0.527 3.802 £0.122 2.830 £ 0.002
GPT-04-mini Zero-Shot 5.651 £ 0.306 3.460 = 1.840 3.777 £ 0.763 2.991 £+ 1.623 2.435 +1.809
Qwen2.5-72b (1=0.7) 80%

Qwen2.5-72b (t=0.2) 20%  OpenEvolve  6.728 +0.205  4.779 + 0.982 5.199 £ 0.190 3.637 £1.035 6.528 £ 0.176
Qwenz2.5-Coder-32b 50%

Qwen2.5-72b 50% OpenEvolve  6.682 + 0.238 4.529 +£1.021 5.426 £0.214  3.417 +£1.118 5.227 £ 0.221

! The shapes are described in Table

Some evolutionary experiment visual results are presented in Appendix

Table 3] Qwen2.5-Coder-32b failed to generate runnable code for
some figures, which led to errors and a zero score in the metrics.
In contrast, GPT-o4-mini successfully generated runnable code
across all tasks. Its performance, however, was uneven: it achieved
relatively strong results on the Tube shape (5.651 + 0.306), outper-
forming Qwen2.5-72b (4.950 + 0.220), but performed worse on the
Gear and Spheres shapes (3.460 + 1.840 and 2.435 + 1.809, respec-
tively), where Qwen2.5-72b achieved higher scores (3.988 + 1.402
and 3.128+0.058). On the Open box and Ladder shapes, both mod-
els showed comparable performance, with GPT-04-mini slightly
lagging behind in stability due to higher variance. These results
suggest that while GPT-04-mini demonstrates a capacity to gener-
ate runnable code consistently, its effectiveness is strongly shape-
dependent and does not uniformly surpass Qwen2.5-72b in zero-

shot performance.

Figure 3. The Qwen2.5-72b model zero-shot results for the gear.

- RS

Figure 4. The GPT-04-mini model zero-shot results for the gear.

Figure 5. The GPT-04-mini model zero-shot results for the spheres.

In terms of visual similarity, Figure[3|shows the gear generated
by Qwen2.5-72b, while Figure [4| presents the gear generated by

GPT-04-mini. The gear from the Qwen2.5-72b model appears visu-
ally closer to the ground truth, that is also confirmed by the evalu-
ation metrics in the Table[3] On the other hand, for the spheres fig-
ure, the solution generated by GPT-04-mini (Figure looks more
accurate compared to the Qwen2.5-72b model results (Figure [6).
This is demonstrated by the combined score, which is higher for
GPT-04-mini.

Overall, these zero-shot results highlight areas for improve-
ment, which we address using the OpenEvolve method, as de-
scribed in the next Section [4.2.2]

4.2.2 OpenEvolve We prepared the pipeline for CAD Recon-
struction task for the OpenEvolve as described in and run
initial benchmark. After five iterations of the algorithm, an ideal-
match 3D model with the maximum value of metrics was obtained
(Fig.[7] right). Fig.[8]shows the visualized program evolution pro-
vided by OpenEvolve.

The OpenEvolve method significantly improved the perfor-
mance of the models on the CAD reconstruction task. As shown
in Table [3] OpenEvolve consistently produced higher combined
scores for most complex shapes compared to the zero-shot ap-
proach. Specifically, the combined Qwen2.5-72b model configu-
ration achieved the best scores for the Tube, Gear, Ladder, and
Spheres figures, outperforming all other models, including GPT-
o4-mini. The combined score for the Spheres figure saw a par-
ticularly notable improvement of over 0.7 from the zero-shot re-
sult. Additionally, OpenEvolve successfully addressed the failures
of the Qwen2.5-72b and Qwen2.5-Coder-32b models, which failed
to generate runnable code for some shapes in the zero-shot tests.

The combination of Qwen2.5-Coder-32b and Qwen2.5-72b also
yielded strong results, achieving the highest combined score for
the Open box figure. This suggests that mixing different models
within the evolutionary loop can be an effective strategy, leverag-
ing the strengths of each model to produce better outcomes. Over-

Figure 6. The Qwen2.5-72b model zero-shot results for the spheres.
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all, these results confirm that the iterative, evolutionary process of
OpenEvolve is crucial for accurately reconstructing complex CAD
models, moving beyond the limitations of single-pass, zero-shot
methods. Visual results of some of these experiments are provided

in Appendix

Figure 7. Example of built CAD meshes. Green model to the left - the
Ground Truth for the experiment, gray model in the middle - the CAD
mesh proposed by OpenEvolve on iteration 4, red model in the right - the
final perfect match CAD mesh proposed by OpenEvolve on iteration 5.

* open in n dow]

Program ID: 33f5e145-50a1-40fc-8d77-
4e8b6376108b

Island: 0

Generati

Parent ID:

Metrics:

as 1.0000

cd 1.0000

cdv 1.0000
combined_score 11.0000 [y

ctd 1.0000 §
hd 1.0000 §
hdv 1.0000 §
iou 1.0000 §
is 1.0000 §
viou 1.0000 §
vs 1.0000 §
wd 1.0000 @

Code Prompts

diff_user - responses v

To improve the performance of the
program, we can focus on
simplifying the code and ensuring
that the hole is correctly centered
in the block. The current
implementation creates a hole that

Figure 8. Program evolution graph for specific checkpoint during experi-
ment on the initial benchmark.

4.2.3 Analysis of Error Modes and Evolutionary Pathway
To understand the significant performance gap between zero-shot
generation and the OpenEvolve framework, we must analyze the
types of errors that occur in programmatic CAD modeling. These
errors can be broadly categorized into two types:

« Structural Errors: These are fundamental, topological mis-
takes where the core components or operations of the design
are incorrect. Examples include failing to create a hole, gen-
erating a solid block instead of an open box, or omitting a
key feature like the teeth on a gear. These errors represent a
misunderstanding of the object’s basic structure and cannot
be fixed by simply adjusting numbers.

« Parametric Errors: These occur when the model’s overall
structure is correct, but its dimensions, positions, or other
numerical attributes are inaccurate. Examples include a gear
with the correct number of teeth but the wrong radius, or a
hole that is correctly placed but has an incorrect diameter.
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These errors can be fixed by tuning the parameters within
an already correct program structure.

Our analysis reveals that zero-shot LLMs frequently commit
parametric errors in case of easily describable models (e.g. Fig-
ures and . As seen in Figure @ the zero-shot attempt by
Qwen2.5-72b on the ’Spheres’ task resulted in a both parametric
and structural failures. The model lacks distinct, correctly formed
additional sphere and a properly parametrized subtraction sphere.
This failure mode is common in single-pass generation, where
a single logical misstep in the program’s control flow leads to a
completely incorrect topology. It appears more frequently as the
complexity of the 3D models increases. Mostly it is caused by the
wrong translations of the model’s part in relation to other parts.
In some cases it is even impossible to construct the model. The
Qwen2.5-72b failed to construct the 'Ladder’ model.

The OpenEvolve framework excels precisely because its evolu-
tionary process creates a pathway to solve both types of errors in
sequence. As illustrated in Figure [9] the process unfolds in two
distinct phases:

1. Structural Discovery (Early Generations): In the initial
generations, the population of programs is highly diverse.
Most attempts contain structural errors, like shown in Fig-
ure However, through mutation and selection guided
by the evaluation metrics, the system tries to discover cor-
rect structural elements like in Figure @ Figure shows a
critical "structural leap" where a mutation successfully intro-
duces the concept of cogs. Even though these cogs are para-
metrically incorrect (wrong position), their existence pro-
vides a massive improvement in the evaluation score. The
evolutionary search prioritizes this correct topology, ensur-
ing it becomes the foundation for future generations.

2. Parametric Refinement (Later Generations): Once a
structurally sound program template is established within
the population, the evolutionary search shifts its focus to
parametric optimization. The LLM, now prompted to make
small modifications to a high-quality parent program, gener-
ates variations that adjust dimensions. The program evolves
to have the correct position and shape of cogs. Guided by
the continuous feedback from the scoring function, most of
the later generations tries to fine-tune these values. It took
most of iterations to properly fix the position. The solution
converges on the ground truth, as shown in Figure [0d]

In summary, evolution provides a robust, two-stage search
mechanism that single-pass generation lacks. It first navigates
the vast and difficult space of program structures to find a viable
topology and then efficiently optimizes the parameters within that
structure. The feedback provided by the evaluator agent and ran-
dom mutations are main reasons for better performance on com-
plex design tasks in comparison to the simple one-shot approach.

4.3 Ball partitioning into parts of smaller diameter

Let B,, be the n-dimensional ball centered at O with radius r = %
We want to find optimal partition of this ball into parts of smaller
diameter. Formally, we estimate the quantity

dn = sup inf{x eRy:3A, .. ~3An+l cR”  AjUAL L
AcR™ diam(A)=1
-+-UApsy1 =B, and diam(A;)) <x Vie{lL2,...,n+1}}.
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# Simple disk is created 1
result = cq.Workplane("XY") 2
.circle(10).circle(40).extrude (20) 3

4

Listing (1) Structural Error: The initial program completely misses the
core concept of gear teeth. There was an attempt to generate it, but it was
unsuccessful.

(a) Iteration 1: Structural Error

L 4

# Parameters closer but not correct 1

cog = cq.Workplane("XY") 2
.rect (20, 10) 3
.extrude (cog_height + 2)

.translate((0, outer_radius + 4

cog_length / 2, -2))

Listing (3) Structural Leap: The proper cog structure is found, but
position (as parameter) need refinement.

(c) Iteration 16: Structural leap

# Loop fixed to add visible protrusions
for i in range(6):
# ... (code for a triangular wedge)

Listing (2) Protrusions improvement: Evolution tries to improve the
protrusions, it still structurally wrong.

(b) Iteration 2: Protrusions improvement

o

# Final, correct parameters

.extrude (cog_height)

.translate((0, outer_radius + cog_length / 2 -
2)) # proper insertion

# ... (rotation and union of cog and gear

models)

Listing (4) Converged Solution: Both structure and parameters match
the target, achieving a high score.

(d) Iteration 98: Converged Solution

Figure 9. Evolutionary Pathway for the Gear Shape, Demonstrating Correction of Structural and Parametric Errors. The evolutionary process

is shown in four stages. (a) Initial attempts often result in structural errors.

(b) The process tries to fix the topology but make mistakes. (c) A key

structural leap introduces the correct topology, even with incorrect parameters. (d) Finally, the process converges to a solution that is both structurally

and parametrically correct.
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Figure 10. Comparison of the theoretical value for optimal partitions and
two experimental ways: via OpenEvolve and via the best partition over
multiple runs (multistart strategy).

The partition can be parametrized via n + 1 points

C,Cy,...,Che1 € 0B, located at the ball’s surface. If the
O ¢ conv(Cy,...,Cps1), then the maximal diameter of partitions
based on Cy, ..., Cphy1 equals 1, else these points parametrized the

balls partitions into cones centered at O of smaller diameter (the
construction of these partitions have been obtained from facets
of the above mentioned convex hull in R”. We apply OpenEvolve
approach to find the (n + 1) points on 9B, parametrized the
optimal ball’s partition and the goal is to minimize the maximum
over the diameters of the partition cones. As we mention in the

. . . — 1
Methodology section, this value theoretically equals d, = /&5

and achieved on the regular simplex based construction (for
instance, regular triangle vertices in planar case or regular
tetrahedron in R?). During this experiment we apply OpenEvolve
approach to find optimal balls partitions for each dimension from
2 to 9 separately. The results of the comparison of OpenEvolve
based estimations with theoretical results and Monte Carlo
sampling methods (best partition over 10000 samples of points
C1,Cy, ..., Cpy1 uniformly distributed on 0B,) are presented at
the Figure The prompt for this task has been provided at the
Appendix of this paper.

Interestingly to note, that experimental results coincides with
the theoretical estimations, and the model learns the optimal reg-
ular simplex based structure of partitions (Figure[11]illustrates the
regular simplex vertices that have been learned via this approach
in case of n = 3). It’s important to highlight, that in the exper-
iment we slightly change the prompt to generalize our task and
apply it for n = 13, then the program learns the optimal parti-
tion structure (vertices of regular simplex) for all dimension val-
ues from n = 2 to n = 13. This example shows the generalization
ability of evolution based approaches and highlights the promis-
ing way to use evolution-based approaches like OpenEvolve for
more complicated partition problems in the combinatorial geom-
etry. Particularly, it can be applied for the study of partitions of
other universal covering sets (not only the ball form Young’s the-
orem) into parts of smaller diameter and for other problems re-
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Figure 11. Optimal partition of 3-dimensional ball with unit diameter into
4 parts based on the regular simplex. The red lines (segments between O
and Cy, Cy, C3, Cy indicates the partition cones edges.

lated to the Borsuk problem [1]]. One of the main difficulties here
related to the complex structure of evaluation part of OpenEvolve
pipeline - for high-dimensional non-trivial universal covering sets
the computation of the diameter of partition sets is a hard prob-
lem, however this issue will be mitigated during further research
work on this topic.

5 Conclusion

The open-source implementation of AlphaEvolve, OpenEvolve,
proves to be a versatile and effective framework for complex opti-
mization tasks, outperforming single LLMs by iteratively refining
a population of solutions to systematically achieve more robust
outcomes. Our study successfully applies this LLM-driven evolu-
tionary search approach to a new domain: CAD reconstruction.
By doing so, we not only create a new benchmark for this spe-
cific problem but also demonstrate the broader potential of this
methodology for solving other complex challenges, such as com-
binatorial geometry problems.
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6 Appendix
6.1 Inference Resources Details

6.1.1 Ascend TPU To experiment with local inference a remote
host with Huawei Ascend TPUs was provided. We used Huawei’s
ModelArts platform to develop and execute the inference work-
flow. ModelArts is a one-stop Al development platform providing
managed notebook, training, and deployment services support. In
particular, we created a ModelArts Notebook instance with the
Ascend-enabled image, giving us an interactive Python environ-
ment. This notebook instance came preconfigured with the nec-
essary Ascend drivers and frameworks. All models and data were
stored in Huawei’s cloud storage: we used Object Storage Service
(OBS) to host the model files. OBS provides scalable bucket stor-
age for larger model assets. We mounted these storage resources
into the notebook so that our model files could be loaded at run-
time. Importantly, since our work involves inference only, we did
not perform any training or fine-tuning on these models — we sim-
ply loaded them from storage into the Ascend-accelerated runtime.
We ran all computations on a virtual machine with eight Ascend
Snt9B3 NPUs. Each Ascend Snt9B3 card provides 32 GB of high-
bandwidth memory, it gives up to 256 GB. This amount of high-
bandwidth memory provided opportunity to load few models with
more than 70 billions parameters and a large context size. The host
node uses a 192-core ARM processor with 1.536 TB of RAM.

6.1.2 Yandex DataSphere GPU As an alternative we used a
Yandex DataSphere service for the same purposes. It offers up to
32 GB of VRAM which may be not enough for our experiments.

6.1.3 Inference API For quick experiments we employed
OpenRouter API, GPT4Free, and Mistral AP Initial experiments
included usage of DeepSeek R1 671B, mistral-small-latest, and
mistral-large-latest models. Finally, we applied GPT-04-mini,
Qwen2.5-72b, and Qwen2.5-Coder-32b as backbone LLMs for our
experiments with OpenEvolve.

6.2 Dataset details

As outlined in Section [3.3.1, we used the Text2CAD dataset [4]
as our starting point. We later realized that we did not need the
Text2CAD reference code, because our experiments compare the
final 3D models rather than the code. Based on this, our dataset
includes (i) a short test description, example of which is shown
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in Table[4] (ii) the figure name, and (iii) a Python script using the
trimesh library to recreate the ground-truth 3D model. In ad-
dition to figures taken from Text2CAD, we also created several
figures ourselves to cover missing cases.

Our dataset is available at link!

The original Text2CAD dataset is at link!

Table 4
Comparison of Prism CAD Model Descriptions

Initial Text2CAD Description

Create a new coordinate system with Euler angles set to 0 degrees for
the first 2 axes and -90 degrees for the third axis. Set the translation
vector to 0 for the first and third axes and 0.6666 units for the second
axis. Draw a 2-dimensional sketch on the first face. In this sketch,
start by drawing the first loop which consists of 11 lines. The first line
starts at coordinates (0, 0.3566) and ends at (0.0716, 0.1362). Continue
drawing the subsequent lines according to the specified coordinates
until the eleventh line, which connects back to the starting 0. After
completing the first loop, apply a scale factor of 0.75 to the entire 2-
dimensional sketch. Transform the scaled 2-dimensional sketch into 3
dimensions by rotating it using the same Euler angles and translating
it using the same translation vector. Extrude the transformed sketch
0.6666 units along the normal direction to create a solid body. The final
dimensions of the rounded cube base are approximately 0.75 units in
length, 0.7133 units in width, and 0.6666 units in height

Our Simplified Description

Prism with height 200mm with right 10-sided polygon base. Length of
one side of polygon is 20mm

6.3 OpenEvolve evaluator prompt for CAD Reconstruction

You are an expert in parametric 3D modeling using CadQuery and Python. Your task
is to write a Python function using the CadQuery library that generates
a 3D model matching a reference information about the shape as closely as
possible .

Requirements :

1. The code must use CadQuery primitives and operations.

2. The function should return final CadQuery solid object (*cq.Workplane® with 3
D geometry).

3. The script must be executable in a standard Python environment with CadQuery
installed (no other packages).

4. Remove all comments and descriptions from the solution code

You have a text shape description with important information.

Here are description of metrics on which

the result will be evaluated (with respect to original object):

- “iou® (Intersection over Union) measures the overlap between two meshes based
on their volume.

- “viou' (Voxelized IoU) measures the IoU on a voxelized representation of the

meshes

- “cd’ (Inverse Chamfer Distance) measures the average squared distance between
nearest points on the two mesh surfaces.

Concept: ‘1 - (mean_dist(P1 -> P2)"2 + mean_dist(P2 -> P1)2)"

- “hd® (Inverse Hausdorff Distance) measures the maximum "worst-case” distance
between the two surfaces. It finds the point on one surface furthest from
any point on the other. Calculated on 5000 sampled points.

Concept: ‘1 - max(max_dist(P1 -> P2), max_dist(P2 -> P1))"

- “wd> (Inverse Wasserstein Distance) measures the minimum "cost" to transform
one surface's point cloud into the other.

Concept: 1 - EMD(P1, P2)°

- “as' (Surface Area Similarity) compares the scalar surface area of two meshes.

Formula: ‘1 - |Areal - Area2| / max(Areal, Area2)’

- Yis® (Inertia Similarity) compares the moment of inertia tensors, which
describe the mass distribution and rotational properties of the objects.

Formula: ‘1 - ||Inertial - Inertia2|| / (||Inertial|| + |[|Inertia2|[)"

Shape description:
A 80x60x10 block (length x width x height) with central hole of radius 22

6.4 OpenEvolve initial program for CAD Reconstruction
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# EVOLVE-BLOCK-START
"""Function that builds 3D figure by text description"”

import cadquery as cq

def build_3d_figure () -> cq.Workplane:
return cq.Workplane ()

# EVOLVE-BLOCK-END

6.5 OpenEvolve evaluator prompt for the ball partition

You are an expert in combinatorial geometry and Python.
Your task is to write a Python function that generates an optimal k-parts
partition of a n-dimensional ball of given radius
where k = (n + 1), so as to partition the ball into (n + 1) conical regions
whose maximal diameter is as small as possible.
You can change function in all possible ways as you want as long as it fits
requirements and constraints and improves evaluation metrics.

Requirements :

1. The code must use only standard Python and NumPy primitives and
operations .

2. It must return a NumPy array of shape (k_points, n_dim) whose rows are
the coordinates of the k_points points on the sphere of radius “radius®

Constraints:

- Points must lie on the surface of the n-dimensional ball of the

given ‘radius ®

- The points define a convex hull. If the center of the ball lies inside
this convex hull, the configuration is invalid (validity = 0).

- The partition is formed by cones whose apex is at the center of the ball
and whose bases are the facets (triangles) of the convex hull formed by
the points.

Evaluation metrics (computed externally):

- “validity “: 1.0 if the shape of the point cloud matches the requirements (
see above), otherwise 0.0.

- “max_diam " : the maximum diameter among all conical regions (i.e., the
largest distance between any pair of points in each partitions cone),
this value cannot exceed the ball diameter. it is necessary to minimize
this value.

- “target_ratio *: ratio of the theoretical minimum possible diameter to the
actual “max_diam® (higher is better, capped at 1).

- “combined_score : validity x target_ratio (your main optimization
objective) .

Your goal:
Maximize the *combined_score >, which is equal to "target_ratio  if
the packing is valid and zero otherwise. Max_diam should be minimize

6.6 OpenEvolve initial program for the ball partition

# EVOLVE-BLOCK-START
"""Constructor -based the partition of n-dimensional sphere
into (n + 1) parts of smaller diameter'""

import numpy as np
from scipy.spatial import ConvexHull, distance
import matplotlib.pyplot as plt

from itertools import combinations

import scipy.stats as sps

def construct_packing(n_dim, k_points, radius=0.5):

Construct a random partition

Returns :
points

# Initialize points via random sampling from the uniform sphere distribution

points = sps.uniform(loc=-1, scale=2).rvs(
(k_points , n_dim)

)

points = points / np.linalg.norm(points, axis=1, keepdims=True)

points »= radius
return points

# EVOLVE-BLOCK-END

6.7 Evolutionary experiment visual results

SMILES 2025

SMILES Summer School Projects Proceedings

0 00000

23 30 42z

Figure 12. OpenEvolve evolution results for the gear figure using the
Qwen2.5-72b model with each stage labeled by its iteration number be-
low.

.00

Figure 13. OpenEvolve evolution of the gear figure generated by alternat-
ing between Qwen2.5-72b and Qwen2.5-Coder-32b (50% each), with each
stage annotated by its iteration number below.

Oere

Figure 14. OpenEvolve evolution results for the spheres figure using the
Qwen2.5-72b model with each stage labeled by its iteration number below.

o pase

2 17 21

Figure 15. OpenEvolve evolution of the spheres figure generated by al-
ternating between Qwen2.5-72b and Qwen2.5-Coder-32b (50% each), with
each stage annotated by its iteration number below.

000

0 8

Figure 16. OpenEvolve evolution of the tube figure generated by alternat-
ing between Qwen2.5-72b and Qwen2.5-Coder-32b (50% each), with each
stage annotated by its iteration number below.
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1 3 12 13 17

Figure 17. OpenEvolve evolution of the ladder figure generated by al-
ternating between Qwen2.5-72b and Qwen2.5-Coder-32b (50% each), with
each stage annotated by its iteration number below.

21 28

Figure 18. OpenEvolve evolution of the open box figure generated by al-
ternating between Qwen2.5-72b and Qwen2.5-Coder-32b (50% each), with
each stage annotated by its iteration number below.
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