
Автономная некоммерческая организация высшего образования

«Университет Иннополис»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(БАКАЛАВРСКАЯ РАБОТА)

по направлению подготовки

09.03.01 - «Информатика и вычислительная техника»

GRADUATION THESIS

(BACHELOR’S GRADUATION THESIS)

Field of Study

09.03.01 – «Computer Science»

Направленность (профиль) образовательной программы

«Информатика и вычислительная техника»

Area of Specialization / Academic Program Title:

«Computer Science»

Тема /

Topic

 Определение текстового плагиата в области больших

языковых моделей с использованием обучения с

подкреплением /

Text plagiarism detection in the field of large language models

using the reinforcement learning

Работу выполнил /

Thesis is executed by

 Береснев Дмитрий

Владимирович /

Dmitry Beresnev

подпись / signature

Руководитель

выпускной

квалификационной

работы /

Supervisor of

Graduation Thesis

 Бекларян Армен Левонович

/

Armen Beklaryan

подпись / signature

Консультанты /

Consultants

подпись / signature

Иннополис, Innopolis, 2024

Contents

1 Introduction 8

1.1 Considered text plagiarism types 9

1.2 The relevance of applying DRL to text plagiarism detection . . . 10

1.3 Deep reinforcement learning approaches 11

1.3.1 Q-learning . 11

1.3.2 Policy Gradients . 12

1.4 Limitations and implications 12

2 Literature Review 13

2.1 Search process . 13

2.2 Existing approaches . 14

2.2.1 Policy Gradients approach 14

2.2.2 Deep Q-network approach 15

2.2.3 Ensemble approach . 15

2.3 Conclusions and insights . 16

3 Methodology 17

3.1 Research design . 17

3.2 Data collection . 18

CONTENTS 3

3.2.1 Base dataset selection 19

3.2.2 Plagiarism generation 19

3.2.3 Dataset compilation 25

3.3 Solution architecture . 30

3.3.1 Decision Network (DNet) 31

3.3.1.1 REINFORCE 33

3.3.1.2 Advantage Actor-Critic (A2C) 36

3.3.1.3 Deep Q-Network (DQN) 39

3.3.2 Structured representation model (SRM) 40

3.3.3 Regression Network (RNet) 42

4 Evaluation and Discussion 44

4.1 Training details . 45

4.2 Experiment settings . 45

4.3 Baselines . 48

4.4 Regression results . 50

4.5 Representations analysis . 51

4.5.1 Qualitative analysis . 53

4.5.2 Quantitative analysis 53

4.6 Limitations and Future Work 56

5 Conclusion 58

Bibliography cited 59

A Additional experiments 65

List of Tables

I LLMs prompts for text plagiarism generation calls 21

II Example of Type 1 plagiarism generation results 24

III Example of Type 2 plagiarism generation results 25

IV Train and test dataset sizes . 29

V Sizes of different sub-datasets 29

VI Experiment parameters shapes 47

VII Number of trainable parameters of baseline and solution archi-

tectures . 50

VIII Regression MSE loss on synthetic dataset 51

IX The initial average length and the obtained average length by

SRM-R, SRM-A and SRM-D in test dataset 54

X Examples of the most and least deleted words in the test dataset 55

XI The initial average length, mean of removed ratio and the stan-

dard deviation of obtained length by SRM-R, SRM-A and SRM-

D in AG News test dataset . 65

XII Tendency to delete words denoting the days of the week in the

AG News test dataset . 66

LIST OF TABLES 5

XIII Tendency to delete words denoting the brands in the AG News

test dataset . 67

XIV Tendency to delete words connected to sport in the AG News test

dataset . 68

XV Tendency to delete words denoting jobs in the AG News test dataset 69

XVI Tendency to delete words denoting the high technologies in the

AG News test dataset . 70

List of Figures

1 Processes of text plagiarism generation 22

2 Example of maintaining LLM session history 23

3 Solution architecture overview 31

4 Advantage Actor-Critic (A2C) architecture with shared body . . 37

5 Epsilon strategy for Deep Q-Network algorithm 46

6 CNN-based baselines outline 49

7 Examples of text representations discovered by SRM-R, SRM-A

and SRM-D . 52

Abstract

The active development of large language models (LLMs) and the ease of

access to them are the reasons for the emergence of an enormous amount of pla-

giarized texts. Modern research provides several techniques to detect text pla-

giarism. Most of such techniques use machine learning, especially deep neural

networks (DNNs). One of the possible approaches working with DNNs is to

build text representation for further processing. However, constructing the effec-

tive text representation for plagiarism detection task can be challenging.

This study proposes a model for text plagiarism detection in the field of

LLMs, with uses deep reinforcement learning (DRL) method to automatically

learn effective text representation.

This study examines two types of text plagiarism: text paraphrased by LLM

and text generated by LLM given the idea of the original text. To build text

representation, the representation learning task was formulated as a sequential

decision problem and the structured representation model (SRM) was designed,

which extracts only task-relevant words from the text. For models training and

performance evaluation, synthetic dataset was built using SOTA LLMs.

Experiments demonstrate that proposed model architectures can learn task-

specific text representation by removing irrelevant words, and as achieve compet-

itive performance against SOTA representation building approaches.

This research illustrates a new perspective approach to the text plagiarism

detection problem. The proposed model architectures can increase the quality of

text plagiarism detection in general, and in the field of LLMs in particular.

Chapter 1

Introduction

The active development of large language models (LLMs) and the ease of

access to them are the reasons for the emergence of an enormous number of pla-

giarized texts. Modern research suggests several approaches to detecting text pla-

giarism, the main of which remain approaches based on mathematical statistics

and approaches based on machine learning. Despite the fact that both approaches

demonstrate decent performance, in recent years preference has increasingly been

given to solutions based on machine learning, in particular on deep neural net-

works (DNNs).

One of the popular approaches to handle text using DNN is to build task-

specific text representation, which is easier to work with for neural networks

([1], [2] and [3]). However, constructing the effective and task-relevant text rep-

resentation can be challenging.

In case of this research, the task is text plagiarism detection, so the one of

the possible ways for improvement of text representation building is to extract

only relevant information from the text. This can be implemented as retaining of

significant, task-relevant words and deletion of redundant words with no infor-

1.1 Considered text plagiarism types 9

mation. This task can be formulated as a sequential decision problem with two

actions, which can be naturally addressed to reinforcement learning (RL) and

specifically to deep reinforcement learning (DRL).

The DRL techniques are designed precisely in such a way as to demonstrate

adequate performance and respond appropriately in an environment with a long-

term effect actions. For example, Silver et al. [4] used the reinforcement learning

in AlphaGo model implementation, which became the first computer Go program

to beat a human professional Go player. However, the DRL has not yet been

applied in the field of text plagiarism detection.

Therefore, this study is an attempt to build and evaluate a structured repre-

sentation model (SRM) to detect text plagiarism in the field of LLMs. With this

purpose, DRL algorithms are used to learn efficient structured text representa-

tions, which are then passed to the subsequent neural network. By doing so, this

research aims to expand the scope of DRL algorithms and develop a promising

approach to text plagiarism detection.

1.1 Considered text plagiarism types

The definition of text plagiarism is still a matter of dispute and discussion,

especially after the active development of artificial intelligence systems that allow

you to create a huge number of new texts based on existing ones. The starting

point for plagiarism definition in this research is the original human-written text

which is taken from open sources and public datasets and considered to have

no plagiarism. Then this study examines the following types of text plagiarism,

which cover the basic needs for analyzing texts generated by LLMs:

1.2 The relevance of applying DRL to text plagiarism detection 10

1. Type 1 plagiarism. The original text paraphrased by LLM is considered

to have Type 1 plagiarism in relation to original text.

2. Type 2 plagiarism. The completely new text, fully generated by LLM

given only the short extracted idea of original text is considered to have

Type 2 plagiarism in relation to original text.

Also, to obtain more relevant results, several state-of-the-art (SOTA) LLMs

are used to generate plagiarism of both types. The details of collecting orig-

inal human-written texts, selecting LLMs, and generating plagiarized texts are

described in details in the Section 3.2 of Methodology chapter.

1.2 The relevance of applying DRL to text plagia-

rism detection

In a Section 2.2 of Literature review chapter, it can be seen that application

of DRL algorithms to text processing is actively studied topic. However, the

number of studies in the field of applying DRL methods specifically to the text

plagiarism detection is small. This, as well as the growing popularity of LLMs,

highlights the prospects for research and development of DRL-based solution for

text plagiarism detection in the field of LLMs.

Currently, methods based on effective text representation, embeddings, are

used for text analysis and processing. However, in most of these methods text rep-

resentations either have pre-defined structures ([5], [6]) or are provided as input

([7]). The use of DRL methods can be used to automatically identify task-relevant

text features and build effective representations, without any pre-specified banks.

1.3 Deep reinforcement learning approaches 11

Moreover, relatively simple model used in DRL algorithm can significantly

reduce size of the text by filtering out the unnecessary parts. Obtained text is then

passed to the main task-specific neural network, which is usually quite complex.

In this sense, usage of DRL methods potentially reduces the running time of the

overall model.

Thus, this study can be considered relevant, and the chosen topic is promis-

ing for expanding the scope of DRL and further study.

1.3 Deep reinforcement learning approaches

There are two most popular DRL method classes: Q-learning, which approx-

imates the action-value function Q, and Policy Gradients, which directly learns

policy of an agent. As it is demonstrated in the subsequent Literature review

chapter, both method classes can be used for text processing. This research aims

to explore the application of algorithms from both classes to the text plagiarism

detection in the field of LLMs.

1.3.1 Q-learning

Q-learning focuses on estimating the action-value function. Usually in prac-

tice, the deep neural network is used as Q function approximation. Such variant is

called Deep Q-network (DQN). DQN optimizes policy indirectly by learning the

value first and then using this value to choose the optimal behavior. The main ad-

vantage of the DQN algorithms is ability to benefit from data, obtained from the

old policy, and from other sources, for example, human behavior. Also, DQN ap-

proach is considered to be more stable than Policy Gradients, and requires fewer

1.4 Limitations and implications 12

interactions with the environment.

1.3.2 Policy Gradients

Policy Gradients is an alternative to Q-learning which directly optimizes

the behavior of an agent. The most famous Policy Gradient algorithm is REIN-

FORCE, which uses deep neural network for estimation the actions distribution

based on the current state. Policy Gradients algorithms can learn stochastic pol-

icy, while DQN can learn only deterministic one, and handle continues action

space. The main problem of Policy Gradients is high gradient variance, which

can lead to slow and unstable convergence. However, there are different vari-

ance reduction methods, such as Actor-Critic and Advantage Actor-Critic (A2C)

algorithms.

1.4 Limitations and implications

In this study, the simplest cases of the text plagiarism are considered. The

obtained results for considered cases may not directly translate to more compli-

cated forms of text plagiarism. Further experimentation is necessary to evaluate

the applicability of proposed methods in addressing complex plagiarism types.

Moreover, despite employing several SOTA LLMs for dataset generation, the

quality of produced dataset remains a topic open to discussion.

Nevertheless, the proposed methods have significant potential to enhance

the detection of specific cases of text plagiarism by possible enhancing detection

accuracy and reducing computational overhead.

Chapter 2

Literature Review

This chapter is structured as follows: Section 2.1 describes the method of

literature search. Section 2.2 provides an overview and discussion of the existing

approaches of DRL-based applications for text processing. Finally, Section 2.3

contains conclusions and insights related to this study.

2.1 Search process

According to the survey of DRL approaches [8], the policy-based methods

and Deep Q-Network (DQN) algorithms are the most suitable for text process-

ing tasks. Policy-based methods include Actor-Critic (AC) and Policy Gradi-

ents algorithms. Therefore, the set of search keywords was the following: Text

Processing, Deep reinforcement learning, Actor-Critic, Deep Q-network, Policy

Gradients, Natural Language Processing. The inclusion criterion is that the pub-

lication should describe an architecture or an algorithm for solving text process-

ing tasks, for example text classification. Studies with low credibility level and

those that provide solutions that do not compete in efficiency with state-of-the-art

2.2 Existing approaches 14

(SOTA) approaches were excluded. As a result, most of the papers were taken

from SpringerLink and Google Scholar.

2.2 Existing approaches

The found DRL-based text processing approaches can be categorized as fol-

lows: Policy Gradients approaches, Deep Q-network approaches and ensemble

approaches.

2.2.1 Policy Gradients approach

Policy Gradients approach optimize parameterized policy with respect to

the expected reward. The most known variant of the policy gradients method

is the REINFORCE algorithm. Zhang et al. in [1] proposed two models: In-

formation Distilled LSTM (ID-LSTM) and Hierarchical Structured LSTM (HS-

LSTM), which use the REINFORCE algorithm to optimize parameters of the

policy network. Both models build efficient structured text representations, which

are then passed to the classification network. Authors compared the performance

of both models with such baseline architectures as LSTM, biLSTM and CNN. As

a result, proposed models achieve the classifications accuracy of the baselines on

all used datasets. Even in cases where the proposed models did not demonstrate

the best performance, their results were inferior to the best by less than 1%. Teng

et al. in [9] used the ID-LSTM and HS-LSTM from Zhang‘s study [1] in the

extreme multi-label classification task (XMC). Authors demonstrated that pro-

posed architectures consistently produced best or the second best result against

the most representative XMC methods, such as FastText [10], FastXML [11],

2.2 Existing approaches 15

TextCNN [12] and SLEEC [13].

2.2.2 Deep Q-network approach

The DQN algorithm was presented in [14], where it achieved professional

video games player scores across a classic Atari 2600 games. The DQN uses

the neuron network to compactly represent high-dimensional observations and

to estimate the Q-function. Therefore, the main strength of this algorithm is the

ability to generalize. Lin in [15] introduces the model, which uses the DQN al-

gorithm to solve the problem of low performance of conventional classification

algorithms in the case of imbalanced data distribution. Authors tested the pro-

posed model on image datasets, but in general this architecture can be used with

different types of data, including text. Results show that the performance of the

suggested model in imbalanced data sets is better than other SOTA imbalanced

classification methods, such as DNN, ROS [16], RUS [16], MFE [17], CSM [18],

and DTA [19].

2.2.3 Ensemble approach

Ensemble approach is combining multiple models into one unit called Mix-

ture of Experts models (MoE) and aggregating their results. Li et al. in [20]

combine SOTA solutions for text classification tasks, such as Naive Bayes, SVM-

SGD, FastText [10], BiLSTM and TextCNN [12] into a MoE called RL-ERT. The

DRL policy gradient algorithm is used in the form of weight-tuning policy net-

work (WTPN) to generate suitable weights for results of each expert model for

each sample. The results show that on the PHEME and RumorEval datasets RL-

ERT demonstrates the best or second best result against all the models included

2.3 Conclusions and insights 16

in its composition, individually and in combinations.

2.3 Conclusions and insights

This chapter attempted to give a summary of the most relevant DRL-based

text processing approaches. The most universal technique for text processing

among mentioned is building effective text representation with the use of Policy

Gradients DRL methods. So, this research is an attempt to transfer idea of Zhang

et al. in [1] to a more complex task and implement other algorithms, such as

Advantage Actor-Critic (A2C) and DQN, to solve the problem of text plagiarism

detection in the field of LLMs.

As a subject for further research, combinations of several mentioned ap-

proaches can be considered: for example, an ensemble model consisting of Policy

Gradients based model and with other SOTA solutions, or improving the quality

of classification on an imbalanced data set through integration of DQN into final

architecture.

Chapter 3

Methodology

This chapter outlines the objectives of the present research and the employed

methodology. Specifically, Section 3.2 examines the process of data collection

and utilization of SOTA LLMs in it. Finally, Section 3.3 describes the architecture

of text plagiarism detection models and provides overview of different used DRL

algorithms along with the theoretical foundations.

3.1 Research design

The goal of this research is to build and evaluate DRL-based solution for

text plagiarism detection. Therefore, the research question of this study can be

formulated as following: how effective can a solution, which uses DRL methods

for learning effective text representation, be for detecting text plagiarism in the

field of LLMs?

To answer the stated research question, it was necessary to perform the fol-

lowing steps:

1. Hypotheses formulation. Null hypothesis is that the DRL-based solution

3.2 Data collection 18

has no significant difference in the performance compared to SOTA archi-

tectures for text plagiarism detection. Conversely, the alternative hypoth-

esis states that the DRL-based model can outperforms SOTA architectures

in considered settings.

2. Data collection. Gather a diverse dataset containing original human-written

texts and the corresponding plagiarized versions. It is crucial to ensure that

dataset include both type of the text plagiarism examined in this research:

Type 1 plagiarism and Type 2 plagiarism.

3. Solution development. Formulate the task in terms of reinforcement learn-

ing problem and design a solution architectures for text plagiarism detec-

tion. Specifically, each part of final architecture, Decision Network (DNet),

structured representation model (SRM) and Regression Network (RNEt),

are described in details. Also, the different DRL algorithms for learning

effective text representation within the DNet, such as REINFORCE, Ad-

vantage Actor-Critic (A2C) and Deep Q-Network (DQN), are explained.

The subsequent sections of the current chapter examine each research step

in details.

3.2 Data collection

Data collection and preparation plays crucial role in the performance of ma-

chine learning models and reinforcement learning algorithms. This study con-

siders two types of text plagiarism, which were specifically defined for analyz-

ing texts generated by LLMs, namely Type 1 plagiarism and Type 2 plagiarism.

3.2 Data collection 19

Therefore, the dataset should include original human-written texts together with

corresponding examples of both considered plagiarism types. Preferably, the

dataset should consist of quite diverse topics of original texts to exclude the situ-

ation when the plagiarism version of one text can be easily incorrectly considered

as plagiarism version of another. The last requirement for the dataset is having

several examples of plagiarism for one original text in order to create a task close

to the real world scenarios.

Finding fully prepared dataset that would satisfy all the above criteria is not

an easy task, so it was decided to generate custom dataset from existing (base)

one.

3.2.1 Base dataset selection

As a human-written texts the subset of AG’s corpus of news articles, used

by Zhang et al. in [21], was chosen. This dataset is called AG News and contains

titles and descriptions of articles on the topics ‘world’, ‘sports’, ‘business’ and

‘science’. Originally it consists of 120 000 train samples and 7 600 test samples.

All these samples are considered to be human-written and unique, what means

no plagiarized texts in the initial dataset are presented. Hereafter, texts of these

samples are referred to as source text.

3.2.2 Plagiarism generation

The next step was to generate corresponding examples of two plagiarism

types for each sample. Two fundamental approaches to do this exists:

1. Not using LLMs. This approach includes methods, which do not utilize

3.2 Data collection 20

LLMs to produce plagiarism versions of the source text. For example, for

generating Type 1 plagiarism version (paraphrasing), the simple synonym

replacement within the source text can be applied. Also, the procedure

of translation the source text into another language and then back into the

original language can generate Type 2 plagiarism versions of text.

2. Using LLMs. With this approach, special prompts to LLMs can be used to

generate both types of plagiarism based on the source text.

The approach without LLMs requires at least two different methods to gen-

erate plagiarism versions of two types. Also, this approach almost certainly re-

quires careful design: for example, it is not always obvious how to choose correct

synonym without taking into account the context of the whole text. Moreover,

translation, as an example of Type 2 plagiarism generation procedure, not only

requires additional tools, such as machine translation software, but also can not

guarantee notable modifications of the source text and its coherence. Although

these considerations are applicable only to two specific methods (synonym re-

placement and translation), there is no reason to believe that the more complex

methods of this approach eliminate the mentioned disadvantages. Therefore, the

approach without LLMs was not the best choice, especially, as it is shown below,

compared to approach with LLMs.

To generate plagiarized versions of the source texts the following SOTA

LLMs were chosen:

• OpenChat. Model learned from mixed-quality data and fine-tuned with

C-RLFT — conditional reinforcement learning fine-tuning, proposed by

Wang et al. in [22]. Specifically, model version openchat 3.5 was used.

3.2 Data collection 21

• Pi. AI-based personal assistant powered by Inflection AI.

• Mixtral. Mixture of experts (MoE) decoder-only transformer powered by

Mistral AI. Specifically, model version mixtral-8x7b was used.

The selection criteria for the mentioned LLMs were API availability and

competitive performance comparable to Llama 2 or GPT-based models.

TABLE I
LLMs prompts for text plagiarism generation calls. SOURCE TEXT is replaced
with text the plagiarism is generated for. MAX SYMBOLS is a parameter and set
to 150. IDEA in the context of this paper refers to the result of the ‘Main idea

extraction’ call

Call Prompt

Type 1 plagiarism generation Paraphrase and reformulate the following text as much as
you can keeping the initial idea. Do not make it longer than
initial text. Let it be only the paraphrased text in your an-
swer, without any annotations: SOURCE TEXT

Main idea extraction Write directly in several words the main topic of the follow-
ing text, without details: SOURCE TEXT

Type 2 plagiarism generation Write a short sentence (no more than MAX SYMBOLS sym-
bols) on the following topic: IDEA

To generate different plagiarized texts of different types (Type 1 and Type

2), different prompts to LLMs were used (Table I). Note that generation of Type

1 plagiarism requires only one LLM API call (Fig. 1a), while for Type 2 plagia-

rism generations it is necessary to call the LLM API twice: first API call is for

extraction the main topic of the text, and the second call is for generation new

text based on the extracted idea (Fig. 1b). Also, it is important to mention that

the idea extraction call for the concrete source text is performed only once, and

3.2 Data collection 22

then the result is reused by other LLMs. The LLM for the idea extraction call is

chosen in round-robin manner when iterating over the source texts.

(a) Plagiarism Type 1 generation process

(b) Plagiarism Type 2 generation process

Fig. 1. Processes of text plagiarism generation. Type 1 plagiarism generation
requires only one API call, while Type 2 plagiarism generation requires two.

To generate more diverse versions of text plagiarism, the conversation con-

text (history) with LLM was maintained, so it was possible within the single

session call the same generation prompt multiple times. To ensure that LLM

would not generate the same results within a session, after the first generation

call special history prefix ‘One more time but in different way‘ was added to the

prompt. In this paper, the number of the same generation prompt calls within a

single session with LLM was set to 2 (Fig. 2).

Due to the restrictions of the LLM API calls number and lack of computa-

tional resources, the initial AG News dataset with 120 000 train and 7 600 test

samples were truncated to only 120 train and 7 test samples. It will be demon-

3.2 Data collection 23

strated in the subsequent subsection that such number of samples is enough to

build satisfactory dataset.

User: Write a short sentence (no more than 150 symbols) on the following topic: Ele-
phant escape at Moscow Zoo

LLM: Yesterday, an elephant escaped from Moscow Zoo, causing a brief panic before
being safely recaptured. Zoo officials are investigating how the elephant was able
to escape.

User: One more time but in different way write a short sentence (no more than 150
symbols) on the following topic: Elephant escape at Moscow Zoo

LLM: An elephant made a surprise exit from Moscow Zoo, leading to a temporary uproar
until it was secured. Authorities are examining the cause of the elephant’s escape.

Fig. 2. Example of maintaining LLM session history. It allows getting two dif-
ferent Type 2 plagiarism variants from the once extracted idea.

Hence, the overall plagiarism generation algorithm for each initial dataset

(train and test) can be described as follows:

1. Shuffle and truncate the initial dataset to be the desired size: in case of

this paper it means 120 samples for train dataset and 7 samples for test

dataset. Note that shuffling is performed independently for each dataset,

what means, in particular, that different samples for truncated train and test

datasets before plagiarism generation can present.

2. For every source text from the dataset generate K (different) plagiarized

versions of Type 1 plagiarism for every available LLM. In case of this pa-

per, K = 2 and available LLMs are openchat, pi and mixtral.

3. Shuffle and truncate the initial dataset to be the desired size, using different

random seed.

3.2 Data collection 24

4. For every source text from the dataset generate K (different) plagiarized

versions of Type 2 plagiarism for every available LLM.

The results of the plagiarism generation algorithm are presented in the form

of 4 tables: for each dataset, training and testing, as well as for each of the two

types of plagiarism (Tables II and III).

TABLE II
Example of Type 1 plagiarism generation results. The initial sentence was ’A

teenager from Brooklyn won a million dollars in the lottery and is now going to
spend all the money on ice cream’

LLM Call Result

first generation call

openchat A young person hailing from Brooklyn has secured a million-dollar prize
through the lottery, intending to invest every cent into indulging their sweet
tooth with delectable frozen treats

pi A young person from New York City has become a millionaire through a
lottery win and plans to use the entire amount on frozen treats

mixtral A young person hailing from Brooklyn has emerged victorious in the lottery,
securing a grand prize of one million dollars, and is now determined to splurge
it all on gelato

second generation call

openchat 15-year-old resident of Brooklyn has recently emerged victorious in a lottery,
pocketing a substantial sum of one million dollars, which they have resolved
to allocate entirely towards the purchase of their favorite chilled dessert vari-
ety

pi A Brooklyn teen has won a million-dollar lottery prize and intends to allocate
the entire sum to purchasing ice cream.

mixtral A youth from Brooklyn has struck gold in the lottery, winning a substantial
sum of one million dollars, and is now decided to indulge entirely in frozen
desserts

3.2 Data collection 25

TABLE III
Example of Type 2 plagiarism generation results. The initial sentence was ’A

teenager from Brooklyn won a million dollars in the lottery and is now going to
spend all the money on ice cream’. The main idea was extracted by openchat

and was ’Teenager wins lottery, spends money on ice cream’

LLM Call Result

first generation call

openchat 17-year-old lottery winner indulged in a massive ice cream spree, delighting
friends and neighbors alike

pi A teenager won the lottery and decided to indulge in their sweet tooth, spend-
ing the money on a lifetime supply of ice cream

mixtral Thrilled teenage lottery winner splurges on a mountain of ice cream, turning
their sweet tooth dream into a chilly reality

second generation call

openchat Lottery-winning teen splurges fortune on sweet treats, creating an ice cream
frenzy among peers

pi A lucky teenager hit the jackpot in the lottery and chose to satisfy their crav-
ings by investing the winnings in a never-ending supply of ice cream

mixtral Luck strikes a teen, as lottery winnings turn into an avalanche of ice cream,
fulfilling their frozen treat fantasy

3.2.3 Dataset compilation

The next step after plagiarism generation was dataset compilation. This

means that obtained source texts together with corresponding plagiarized ver-

sions had to be organized into desired datasets for further training and evaluation

of models.

The following dataset structure was chosen for each data point:

• Target text, or just target. This is the text that would be selected as a

starting point for detecting plagiarism.

3.2 Data collection 26

• Candidate text, or just candidate. This is the text that would be checked

for any plagiarism, or absence of plagiarism, of the target.

• Plagiarism score, or just score. The non-negative float number between

0 and 1, which indicates how much does the candidate text plagiarize the

target text. Score 1 means the total plagiarism, and score 0 means no pla-

giarism between target and candidate.

Based on definition of the Type 1 and Type 2 plagiarism types and design of

plagiarism generation, the scores 1.0 and 0.5 were chosen for Type 1 and Type 2

plagiarism types obtained in previous subsection respectively.

Besides the above-mentioned structure of data points, the desired dataset

had to meet the following criteria:

• Representativeness. Both Type 1 and Type 2 plagiarisms as well as ab-

sence of plagiarism should present in the resulting dataset. Ideally, all the

data obtained in the previous subsection should be utilized.

• Balance. Dataset should include data points with both plagiarism types and

the absence of plagiarism in equal proportions. In this case, the number of

examples with plagiarism of both types and examples with no plagiarism

should be 1
3 of the dataset size each.

• Order invariance. The model is expected to predict plagiarism score

equally well, regardless of the order in which the texts appear. In other

words, if text A and text B are sent to the model in statuses target and can-

didate respectively, the predicted score should not differ much from the one

that would have been obtained if text A had been assigned candidate status,

3.2 Data collection 27

and text B had been assigned target status. Therefore, it is necessary to

sometimes set the different statuses to the same text within a single dataset.

• Flexibility. The size of the dataset should be easy to change, which means

changing the number of data points within the dataset, if possible without

losing others desired dataset criteria.

After the plagiarism generation, 127 (120 for training and 7 for testing

datasets) source texts in total were present, and for each source text 6 plagiarized

versions of Type 1 plagiarism and 6 plagiarized versions of Type 2 plagiarism

were generated. All the data can be represented as two tables, for both plagia-

rism types, where single row contains source text together with 6 corresponding

plagiarized versions. Hereafter, these tables are referred to as Type 1 plagiarism

table and Type 2 plagiarism table respectively.

Taking into account the data point structure chosen above and the outlined

criteria of the desired dataset, the compilation process of the dataset was the fol-

lowing:

1. Type 1 positive sampling. For each row of Type 1 plagiarism table, gener-

ate all possible 2-length permutations, where the first element in each result

pair is treated as target text, and the second element is treated as candidate

text. Assign score 1.0 to each pair.

2. Type 1 negative sampling. Let the size of Type 1 plagiarism table be N1,

so the number of resulting pairs from previous step is 7!
(7−5)!N1 = 42N1.

For each source text from Type 1 plagiarism table sample 42N1/N1/2 = 21

other different source texts from the same table at random. Assign score

0.0 to each pair.

3.2 Data collection 28

3. Type 2 positive sampling. For each row of Type 2 plagiarism table, gener-

ate all possible 2-length permutations, where the first element in each result

pair is treated as target text, and the second element is treated as candidate

text. Assign score 0.5 to each pair.

4. Type 2 negative sampling. Let the size of Type 2 plagiarism table be N2,

so the number of resulting pairs from previous step is 7!
(7−5)!N2 = 42N2.

For each source text from Type 2 plagiarism table sample 42N2/N2/2 = 21

other different source texts from the same table at random. Assign score

0.0 to each pair.

5. Combine the results of steps 1–4 and produce a single dataset with the

size 42N1 +21N1 +42N2 +21N2 = 63N1 +63N2. By design of plagiarism

generation given in this research, the size of Type 1 plagiarism table always

equals the size of Type 2 plagiarism table, which means N1 = N2 = N. So

the size of resulting dataset would be 126N.

Remember, that sizes of plagiarism tables for testing and training datasets

were 120 and 7 respectively. Therefore, the procedure above produced the result-

ing training and testing datasets of corresponding sizes 15 120 and 882 (Table IV).

By compilation algorithm design, the resulting datasets always meet the

Representativeness and Order invariance criteria. Produced dataset would be al-

ways balance: the number of examples with plagiarism of both types and exam-

ples with no plagiarism is exactly 42N = 1
3 ·126N each. The produced dataset can

also be easily shrunk: for each part of rows, which corresponds to the data por-

tion obtained during one of 1–4 compilation algorithm step, just every k-th row

can be retained. In such case, the shrink ration would be 1
k and the only criterion

3.2 Data collection 29

that can be affected is Order invariance criterion. For the purpose of this study,

several sub-datasets with different sizes were generated in addition to the entire

training and testing datasets (Table V).

TABLE IV
Train and test dataset sizes after each step of compilation procedure

Step Train dataset Test dataset

Plagiarism tables size 120 7

Type 1 positive sampling 5 040 294

Type 1 negative sampling 2 520 147

Type 2 positive sampling 5 040 294

Type 2 negative sampling 2 520 147

Total 15 120 882

TABLE V
Sizes of different sub-datasets. Label Initial corresponds to the entire dataset
obtained using dataset compilation procedure. For other dataset labels, every

k-th row from the initial dataset was retained

Label k Train dataset size Test dataset size

Initial — 15 120 882

Medium, or md 3 5 040 294

Small, or sm 6 2 520 147

3.3 Solution architecture 30

3.3 Solution architecture

The final solution architecture has conceptual similarities to the one pro-

posed by Zhang et al. in [1]. The model has three main components: Deci-

sion Network (DNet), structured representation model (SRM) and Regres-

sion Network (RNet) (Fig. 3). DNet is responsible for sampling agent actions

on each state. Three different DNets were designed, each for one of the fol-

lowing DRL algorithms: Advantage Actor-Critic (A2C), REINFORCE and Deep

Q-Network (DQN). DNet samples actions for the target and candidate texts, so

the two action sequences for both texts are produced. Action decision process

can be based on explicit stochastic policy, as in case of A2C and REINFORCE

algorithms, or can rely on implicitly derived policy, as in case of DQN. Then

SRM converts the action sequences to the text representation of both target and

candidate. RNet produces the plagiarism score based on target and candidate rep-

resentations. After all, depend on the RNet loss the reward is computed and then

passed to the DNet for update. Note that the reward can be calculated after full

pass of both target and candidate texts through DNet and RNet.

All three solution parts are interchanged and the results of each part is then

passed to the next one. The SRM text representations are derived from DNet

actions. RNet utilizes the SRM representations to predict the plagiarism score.

Finally, DNet uses the delayed reward obtained from RNet to explicitly or im-

plicitly update the action sampling policy (Fig. 3).

In this section the word ‘word’ is widely used in the context of solution

architecture pipeline, and it should be understood in the meaning of ‘token’.

3.3 Solution architecture 31

Fig. 3. Solution architecture overview. The decision network (DNet) samples
action for each state. The structured representation model (SRM) provides state
representation to DNet, and results in final text representation based on DNet
actions. This pipeline is repeated for the target and candidate texts, the final
representations are then concatenated and passed to regression network (RNet).
RNet calculates the plagiarism score and offers the reward to DNet.

3.3.1 Decision Network (DNet)

The decision network conducts the policy for sampling actions and uses the

delayed reward for policy updates. The policy is either explicit and stochastic (if

A2C or REINFORCE are used) or implicit and deterministic (in case of DQN).

The details about different policies are stated in consequent Sections 3.3.1.1

to 3.3.1.3. DNet samples actions based on the current state, which representa-

tion is got from SRM. The delayed reward obtained from RNet is available after

3.3 Solution architecture 32

full pass of entire target and candidate texts through DNet and SRM. When text

representations of both target and candidate texts are received, they are concate-

nated and further passed to RNet to get plagiarism score Y (Equation (3.23)).

The policies (explicit and implicit) and the objective functions of DNet are

specific to the different DRL algorithms, so they are explained separately in cor-

responding Sections 3.3.1.1 to 3.3.1.3 below.

State State stores information about previous history and current input. The

state st construction procedure is described in detail in Section 3.3.2.

Action This research considers two actions: Retain and Delete. The examined

word wt can be retained in the final text representation or deleted from it. Each

action directly influence on state construction in SRM, and this influence is de-

scribed in details in Section 3.3.2.

Reward To compute delayed reward RN , the mean squared loss (MSE) between

Y and Y∗ is used, where Y∗ is true plagiarism score for given target and candidate

texts. Also, like in [1], the ratio of deleted words to the total length of target and

candidate texts is included into the reward. Such term is added to encourage the

model to delete more words. Therefore, the final formula of delayed reward looks

like the following:

RN = log(1− (Y−Y∗)2)+ γ
N ′

N
, (3.1)

where N — total length of target and candidate texts, N ′ — number of deleted

words (where the respective action at is Delete) and γ is hyperparameter used to

3.3 Solution architecture 33

balance the RNet prediction accuracy and deletions ratio.

Since the reward is computed at the end of the episode, after full pass of both

target and candidate texts, the reward in all states except the final, sN is equal to

0, and the reward at final state equals RN . At the same time, the episode return

can be computed as

R=
N

∑
t=1

γ
N−t
decayrt,

where γdecay — decay factor, which is between 0 and 1, and rt is the reward at

state st. Therefore, in this research the total episode return R always equals RN :

R= RN ,

which is usual estimation for action-value function q(s,a), which shows the value

of action at in state st, in the scope of this research the following s true:

q(s,a)≈ RN . (3.2)

The obtained Equation (3.2) is useful for the rest of this section.

3.3.1.1 REINFORCE

REINFORCE is a version of Monte-Carlo Policy Gradient algorithm pro-

posed by Williams in [23]. It adopts an explicit stochastic policy, and uses the

episode samples to update the policy parameters. To construct the sample space,

the full episode should be played, which correlates with the proposed solution

architecture.

3.3 Solution architecture 34

Policy In the case of using REINFORCE, the stochastic policy of selection ac-

tion at given state st obtained from DNet is defined as the following:

πθ (at | st) = softmax(relu(stWrnf
1 +brnf

1)Wrnf
2 +brnf

2), (3.3)

where θ = {Wrnf
1 ,brnf

1 ,Wrnf
2 ,brnf

2 } denotes the parameters of DNet. Hereafter, relu

means ReLU activation function and softmax — default softmax function.

During training stage, the corresponding probabilities from Equation (3.3)

are used for action sampling. During evaluation and testing stages, the optimal

action a∗t is chosen in the following way:

a∗t = argmaxaπθ (a | st) (3.4)

Objective function The expected reward definition is manly based on one given

in [1].

The main goal of policy optimization is maximizing the expected reward,

which is defined as

J(θ) = E(st,at)∼Pθ (st,at)r(s1a1 . . .sNaN) = ∑
s1a1...sNaN

Pθ (s1a1 . . .sNaN)RN

= ∑
s1a1...sNaN

p(s1)∏
t

πθ (at | st)p(st+1 | st,at)RN . (3.5)

Here for the simplicity it is assumed, that N — total length of both target and

candidate texts. By the solution architecture design, the state st+1 is completely

determined by state st and action at, the probabilities p(s1) and p(st+1 | st,at) are

3.3 Solution architecture 35

both equal to 1. Therefore, the Equation (3.5) can be simplified to

J(θ) = ∑
s1a1...sNaN

∏
t

πθ (at | st)RN . (3.6)

The likelihood ratios are then used to compute the policy gradient:

∇θJ(θ) = RN
N

∑
t=1

∇θ logπθ (at | st). (3.7)

In addition to just policy gradient, the entropy H of the policy is included to

the objective function. Entropy is defined as

H(θ) =−∑
a

πθ (a | s) logπθ (a | s). (3.8)

The value of H is always non-negative, and has a single maximum when all the

actions have the same probability to be taken, i.e. when policy is uniform. En-

tropy reaches minimum, when πθ (ai | s) = 1 for some action ai and πθ (aj | s) = 0

for all j ̸= i. Therefore, subtracting the entropy from the objective function pushes

the policy to be uniform, what means punishing the agent to be too sure about

what action to take.

Finally, the objective function for the policy update combines Equations (3.7)

and (3.8), and is defined as

Z(θ) = ∇θJ(θ)−β∇θH(θ), (3.9)

where β is hyperparameter to balance two terms, which is usually called entropy

beta.

3.3 Solution architecture 36

3.3.1.2 Advantage Actor-Critic (A2C)

The Actor-Critic method combines the policy-based and value-based ap-

proaches. In this method, two function approximations are learned: policy func-

tion πθ (a | s), which controls what action the agent selects at state s, and value

function vθ (s), which estimates how profitable the state s is.

The modification of Actor-Critic method, which uses advantage, is called

Advantage Actor-Critic (A2C) and is used for more stable convergence in com-

parison with only policy-based methods, like REINFORCE. The advantage is

calculated in the following way:

A(st,at) = q(st,at)− v(st),

where q(st,at) — action value function.

Advantage A(st,at) indicates the extra reward the agent can get if it selects

the action at at state st compared to the mean reward, v(st), it gets at state st.

Using the Equation (3.2), the formula for advantage becomes the following:

A(st,at) = RN − v(st). (3.10)

In the case of using A2C, the parameters of DNet are the following:

θ = {Wa2c,ba2c,Wa2c
p1

,ba2c
p1

,Wa2c
p2

,ba2c
p2

,Wa2c
v ,ba2c

v }, (3.11)

where {Wa2c,ba2c} are used in the body of A2C, {Wa2c
p1

,ba2c
p1

,Wa2c
p2

,ba2c
p2

} are

used for policy approximation, and {Wa2c
v ,ba2c

v } are used for value approxima-

tion (Fig. 4).

3.3 Solution architecture 37

Fig. 4. Advantage Actor-Critic (A2C) architecture with shared body. For each
part the used parameters from set θ = {W,b,Wp1,bp1,Wp2,bp2,Wv,bv} are listed.
Upper indices of parameters are omitted for clarity.

Policy The policy calculation is similar to REINFORCE case (Equation (3.3)).

The stochastic policy of selection action at given state st obtained from DNet is

defined as the following:

πθ (at | st) = softmax(relu(relu(stWa2c +ba2c)Wa2c
p1

+ba2c
p1

)Wa2c
p2

+ba2c
p2

), (3.12)

where θ denotes the parameters of DNet.

During training stage, the corresponding probabilities from Equation (3.12)

are used for action sampling. During evaluation and testing stages, the optimal

action a∗t is chosen in the same way as in Equation (3.4).

Objective function At the beginning, it is necessary to define vθ (st). The value

function of the given state st obtained from DNet is defined as following:

vθ (st) = relu(stWa2c +ba2c)Wa2c
v +ba2c

v , (3.13)

where θ denotes the parameters of DNet.

The objective function itself in case of A2C consists of three parts: policy

3.3 Solution architecture 38

gradient part, entropy part and value loss part.

First part is policy gradient, which is quite similar to the one give in Equa-

tion (3.7):

∇θJ(θ) =
N

∑
t=1

A(st,at)∇θ logπθ (at | st).

The only difference is that, instead of qθ (st,at) used Equation (3.7), here A(st,at)

is used. Using the Equation (3.10), the policy gradient formula becomes as fol-

lowing:

∇θJ(θ) =
N

∑
t=1

(RN − vθ (st))∇θ logπθ (at | st). (3.14)

Second part of objective function is entropy part, H(θ), which is identical

to one proposed for REINFORCE (Equation (3.8)).

Third and final part of objective function is value loss part, which estimates

how accurate DNet approximates value. The value loss is defined as

Lv(θ) =
N

∑
t=1

(qθ (st,at)− vθ (st))2 =
N

∑
t=1

(RN − vθ (st))2. (3.15)

The objective function is defined as the following combination of Equa-

tions (3.8), (3.14) and (3.15):

Z(θ) = ∇θJ(θ)+∇θLv(θ)−β∇θH(θ), (3.16)

where β has the same meaning as in Equation (3.9).

3.3 Solution architecture 39

3.3.1.3 Deep Q-Network (DQN)

The Deep Q-Network (DQN) approximates a state-value function Q(s,a)

for each possible action and state, using the experience replay buffer. Therefore,

the DQN policy, which is build based on the state-value function, is implicit and

deterministic.

Q-Network is usually optimized towards target network with frozen weights,

which is denoted as Q̂(s,a). In its turn, the target network is periodically updated

with the latest Q-Network weights every ksync episodes, where ksync is a hyperpa-

rameter. The target network is introduced to stabilize training.

In this DNet setting, the state-value function of the given state st is defined

as following:

Qθ (st,at) = relu(stWdqn
1 +bdqn

1)Wdqn
2 +bdqn

2 , (3.17)

where θ = {Wdqn
1 ,bdqn

1 ,Wdqn
2 ,bdqn

2 } denotes the parameters of DNet. Frozen pa-

rameters of Q̂(s,a) are denoted θ̂ .

Policy To perform agent exploration, the ε-greedy strategy is used. ε(i) is a

function Rd → (0,1), which maps the index of current epoch to float value be-

tween 0 and 1. On each step, the agent with the probability of ε selects random

action. Otherwise, the agent selects action which maximizes Q(s,a). This can be

formalized as follows:

πθ (st) =

a∼ {am} with probability ε,

argmaxaQθ (st,a) with probability 1− ε.
(3.18)

3.3 Solution architecture 40

where θ denotes the parameters of DNet and {am} — actions space, which is in

case of this research is {Retain, Delete}.

During training stage, the actions are sampled according to the Equation (3.18).

During evaluation and testing stages, the optimal action a∗t is chosen as a∗t =

argmaxaQθ (st,a).

Objective function In case of DQN, the objective function for the episode con-

sists only form one part — state-value loss LQ(θ) = ∑
N
t=1LQt(θ), and LQt(θ) is

defined as following:

LQt(θ) =

(Qθ (st,a)−RN)
2, if the episode has ended

(Qθ (st,a)−maxa′ Q̂θ̂
(st+1,a′))

2
, otherwise.

Note that for non-terminal states the target network Q̂(s,a) is used to predict value

of the next state st+1. Also recall that every ksync episodes θ̂ is set to θ .

Therefore, the objective function looks like the following:

Z(θ) = ∇θLQ(θ). (3.19)

3.3.2 Structured representation model (SRM)

The purpose of structured representation model (SRM) is to build effective

text representation by retaining the relevant words from the initial text and remov-

ing the irrelevant, redundant ones. By doing this, the SRM is expected to learn

more concise and informative text representation for text plagiarism detection.

For example, prepositions, articles and pronouns may contain little information

useful for plagiarism detection, and rather add some unwanted noise to text rep-

3.3 Solution architecture 41

resentation. Recall that ‘word’ means ‘token’ in the context f text representation

within this study. So, most punctuation can be attributed to irrelevant words. In

contrast, the numbers, for example, may be highly informative for further pla-

giarism detection. The idea of SRM presented below is largely based on the

definition of ID-LSTM given by Zhang et al. in [1].

SRM translates the actions {Retain, Delete} obtained from DNet to the

states and text representation. Namely, for word sequence w1w2 . . .wN ′ the action

sequence a1a2 . . .aN ′ is constructed, where each ai ∈ {Retain,Delete}. The ac-

tion Retain means that corresponding word is relevant and should be used for text

representation building, while action Delete means that word should be ‘deleted’

from the initial text, or skipped, and should have no impact for final text repre-

sentation. This can be formalized as the following:

ct,ht =

ct−1,ht−1, at = Delete

Φ(ct−1,ht−1,wt), at = Retain
(3.20)

where Φ denotes the sequence LSTM block (proposed by Hochreiter and Schmid-

huber in [24]) with hidden state ht and context state ct at step t. If the at =Delete,

all the LSTM cells data is copied from the previous step.

State The state provided by SRM to DNet is defined as following:

st = ht−1 ⊕ ct−1 ⊕wt, (3.21)

where ct−1 and ht−1 are obtained from Equation (3.20), and ⊕ is vector concate-

nation.

3.3 Solution architecture 42

Text representation As a final representation for individual text w1w2 . . .wN ′,

the last hidden state of SRM hN ′ is used.

The final representation of both target and candidate texts, which is then

passed to RNet for plagiarism score prediction, is defined as following:

hN = hNt ⊕hNc, (3.22)

where hNt is the last hidden state of SRM after processing target text, hNc is the

last hidden state of SRM after processing candidate text, and ⊕ is vector concate-

nation.

3.3.3 Regression Network (RNet)

The Regression network (RNet) predicts the plagiarism score based on the

both target and candidate texts representation obtained from SRM. The plagia-

rism score Y calculation within the RNet looks like the following:

Y = σ(relu(hNWr
1 +br1)W

r
2 +br2), (3.23)

where {Wr
1,b

r
1,W

r
2,b

r
2} — parameters of RNet, σ — Sigmoid function, relu —

ReLU function, and hN is defined from Equation (3.22).

In order to train RNet, the mean squared error (MSE) is used as loss function.

For the individual episode the loss function is defied as the following

L = (Y−Y∗)2, (3.24)

where Y∗ — true plagiarism score, and Y is defined from Equation (3.23).

3.3 Solution architecture 43

Note that SRM also has set of trainable parameters (parameters of Φ, Equa-

tion (3.20)), which can be directly trained using loss function defined in Equa-

tion (3.24), because the predicted plagiarism score Y depends on hN (Equa-

tion (3.23)) obtained form SRM.

Chapter 4

Evaluation and Discussion

This chapter describes the training and evaluation workflow together with

presented limitations and future work suggestions. Specifically, Section 4.1 out-

lines the process of solution training. Section 4.2 provides training details, such as

optimization functions and hyperparameter choices. Section 4.3 lists the baseline

models used for comparative analysis. The comparison of the solution architec-

tures with the baselines is made in Section 4.4. Section 4.5 provides analysis of

text representations obtained by the solution architectures. Finally, the limitations

of this study and the further possible development of the considered topic is topic

are described in Section 4.6.

Hereafter, for simplicity, solution architectures with DRL algorithms RE-

INFORCE, A2C and DQN are referred to as SRM-R (Structured Representa-

tion Model with REINFORCE), SRM-A (Structured Representation Model with

A2C), and SRM-D (Structured Representation Model with DQN) respectively.

4.1 Training details 45

4.1 Training details

Since DNet, SRM and RNet are connected with each other and are rotated

during workflow pipeline, they should be trained and updated jointly. However,

as joint training of all components from the entire scratch can be difficult, the

pre-training stages are included, like proposed be Zhang et al. in [1].

Then the overall training process consists of the following steps:

1. Pre-train SRM and RNet on warm-state representations by minimizing Equa-

tion (3.24). Warm-state representations are just the initial target and can-

didate texts without any deletions. Warm-state representations are used to

reduce the high variance, which could occur In case of training DRL parts

from scratch.

2. Fix the parameters of SRM and RNet and pre-train DNet using the cor-

responding objective function: Equation (3.9) in case of SRM-R, Equa-

tion (3.16) in case of SRM-A and Equation (3.19) if SRM-D is used;

3. Unfreeze the parameters of SRM and RNet and train all the tree compo-

nents (DNet, SRM and RNet) jointly until convergence.

4.2 Experiment settings

The medium size md train dataset is used for training, and the small size sm

test dataset is used for testing and evaluation (Table V).

The PyTorch ‘basic english’ tokenizer is used for text tokenization. The

word vectors are initialized using the GloVe vectors proposed by Pennington et

4.2 Experiment settings 46

al. in [25]. The dimension of GloVe vectors as well as dimension of hidden states

of SRM are set to 300.

During the training stage, the Adam optimizer proposed by Kingma and Ba

in [26] is used. The learning rate is similar for the all components and DRL

algorithms and is set to 0.005. Mini-batch size is 10, so processing 10 episodes is

one epoch. Additionally, the Dropout layer with probability 0.5 is placed before

the final layer in RNet.

γ in the reward computation (Equation (3.1)) is set to 0.1. The entropy

beta β in the objective functions of REINFORCE and A2C from Equations (3.9)

and (3.16) is set to 0.001. For DQN algorithm, ksync is set to 20.

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

0.2

0.4

0.6

0.8

1

Epoch

ε
va

lu
e

Fig. 5. Epsilon strategy for Deep Q-Network algorithm. The general function is
defined in Equation (4.1). In the illustrated case, M = 300 — total number of
epochs, ε0 = 1.0 — starting ε value, and C = 50.

The general formula of used epsilon strategy for the DQN algorithm is de-

4.2 Experiment settings 47

fined as following:

ε(i) =
ε0

2
(cos(i ·C−C)+1)exp(−4(i−1)/M), (4.1)

where i — the epoch index, M — total number of training epochs, ε0 — starting

value for ε , and C — positive constant, which defines how frequently the function

oscillates. Equation (4.1) produces oscillated decreasing function (Fig. 5), what

alternates the exploration and exploitation of DQN agent. These alternations help

the algorithm not to stuck in the local minima or plateau. In this study, C = 50

and ε0 = 1.0 are set.

TABLE VI
Experiment parameters shapes. Only shapes for matrix parameters W are given:

the shapes of corresponding bias parameters b are uniquely determined by
matrix parameters from Equations (3.3), (3.12), (3.13), (3.17) and (3.23)

Parameter Shape Parameter Shape

REINFORCE DNet DQN DNet

Wrnf
1 (900,16) Wdqn

1 (900,16)

Wrnf
2 (16,2) Wdqn

2 (16,2)

A2C DNet RNet

Wa2c (900,16) Wr
1 (600,128)

Wa2c
p1

(16,16) Wr
2 (128,1)

Wa2c
p2

(16,2)

Wa2c
v (16,1)

The parameters of RNet and DNets for each DRL are chosen with respect to

the required input and output shapes (Table VI). Specifically, input to the RNet

has size 600, which is determined by the chosen dimension of hidden states of

SRM and Equation (3.22). The input size of DNet, regardless of used DRL algo-

4.3 Baselines 48

rithm, is also determined by the chosen dimension of hidden states of SRM and

Equation (3.21). The outputs are either scalars, as in RNet and in the value part of

A2C DNet, or have size of action space. The action space in case of this research

is {Retain, Delete}, so its size is 2.

4.3 Baselines

Several widely used and relatively simple architectures were chosen as base-

lines. Relative simplicity means that architecture has not numerous trainable pa-

rameters, which is comparable with the number of trainable parameters used in

the proposed solutions. Therefore, the following architectures were selected as

baselines:

• LSTM. A one-directional sequence LSTM.

• biLSTM. A bidirectional sequence LSTM, which is commonly used for

text processing text.

• A-LSTM. A one-directional sequence LSTM with the preceding self-attention

mechanism [27].

• A-biLSTM. A bidirectional sequence LSTM with the preceding self-attention

mechanism.

• CNN-1D. A one-dimensional convolution neural network with one con-

volution layer. Convolution is applied to the concatenation of target and

candidate texts (Fig. 6a).

4.3 Baselines 49

(a) CNN-1D workflow overview

(b) CNN-2D workflow overview

Fig. 6. CNN-based baselines outline.

• CNN-2D. A two-dimensional convolution neural network with one con-

volution layer. Convolution is applied to the target and candidate texts

simultaneously (Fig. 6b).

The baseline models are combined with the proposed RNet for the evalu-

ation. So the set of RNet parameters are the same for the all baselines and so-

lutions, except the input shape, which is architecture-dependent. For all LSTM-

based baselines, the same dimension of hidden state as for SRM are used. A-

LSTM and A-biLSTM use the multi-head attention with 15 heads. CNN-1D and

CNN-2D have the 3 output channels for convolution layers and use the max pool-

ing layers with kernel= 2 and stride= 2 after the convolution layers. The kernel

size for convolution layer is set to 4 for CNN-1D, and to (2,4) for CNN-2D.

Other evaluation settings, such as optimizer and used embeddings, are chosen the

same as described in Section 4.2.

4.4 Regression results 50

Although numbers of trainable parameters of CNN-1D and CNN-2D are ap-

proximately 18 times less than of the other architectures (Table VII), they increase

linearly of the maximum process text length. In contrast, numbers of trainable pa-

rameters of other, LSTM-based, architectures are fixed and do not depend on the

length of processing text.

TABLE VII
Number of trainable parameters of baseline and solution architectures.

Maximum input length for CNN-1D and CNN-2D are set to 217, which
corresponds to the maximum total length of target and candidate texts pairs

across train and test datasets, used in the experiments

Architecture Parameters

baselines

LSTM 761 057

biLSTM 1 521 857

A-LSTM 1 122 257

A-biLSTM 1 883 057

CNN-1D 44 948

CNN-2D 48 548

solutions

SRM-R 813 907

SRM-A 814 196

SRM-D 813 907

4.4 Regression results

Regression results (Table VIII) show that the proposed solutions, namely

SRM-R, SRM-A and SRM-D, demonstrate competitive performance on synthetic

4.5 Representations analysis 51

dataset. Proposed architectures completely outperform the LSTM-based (LSTM,

biLSTM, A-LSTM and A-biLSTM) and CNN-based (CNN-1D and CNN-2D)

baselines. Moreover, even the worst performing solution, SRM-D, has the smaller

MSE loss than the best baseline model — CNN-2D. The obtained results prove

that building text representation using only relevant task-specific words can in-

crease effectiveness of the model.

TABLE VIII
Regression MSE loss on synthetic dataset

Architecture Loss

LSTM 0.1604

biLSTM 0.1601

A-LSTM 0.1658

A-biLSTM 0.1678

CNN-1D 0.1443

CNN-2D 0.1331

SRM-R 0.1082

SRM-A 0.1187

SRM-D 0.1266

4.5 Representations analysis

In these sections analyze text representations obtained by SRM-R, SRM-A

and SRM-D and examines how these representations influence regression per-

formance. For comprehensive understanding, the analysis is conducted in both

qualitative and qualitative points of view.

4.5 Representations analysis 52

Initial text Under a recent legal change, hearse producers are no longer obligated to fit specific
car seat requirements.

SRM-R Under a recent legal change, hearse producers are no longer obligated to fit specific
requirements

SRM-A Under a recent legal change, hearse producers are no longer obligated to fit specific
car seat requirements

SRM-D Under a recent legal change, hearse producers are no longer obligated to fit specific
car seat requirements

Initial text Wanted: skilled programmer for crafting a secure online platform by MyDoom
virus innovators

SRM-R Wanted: skilled programmer for crafting a secure online platform by MyDoom
virus innovators

SRM-A Wanted: skilled programmer for crafting a secure online platform by MyDoom
virus innovators

SRM-D Wanted: skilled programmer for crafting a secure online platform by MyDoom
virus innovators

Initial text During its initial week, Madden NFL exhibited remarkable sales figures, en-
thralling gaming enthusiasts globally

SRM-R During its initial week, Madden NFL exhibited remarkable sales figures, en-
thralling gaming enthusiasts globally

SRM-A During its initial week, Madden NFL exhibited remarkable sales figures, en-
thralling gaming enthusiasts globally

SRM-D During its initial week, Madden NFL exhibited remarkable sales figures, en-
thralling gaming enthusiasts globally

Fig. 7. Examples of text representations discovered by SRM-R, SRM-A and
SRM-D. The cancelled out parts correspond to the parts deleted by models. Punc-
tuation is preserved as in initial text for clarity.

4.5 Representations analysis 53

4.5.1 Qualitative analysis

All the SRM-R, SRM-A and SRM-D models can efficiently remove irrel-

evant tokens and still outperform the chosen baselines. Although each solution

architecture consider different tokens as uninformative, the general trend is no-

ticeable. Specifically, prepositions and articles, such ‘a’, ‘for’, ‘under’ and ‘by’,

are usually removed by all the proposed solutions. Moreover, the entire consec-

utive subsequence of the text can be deleted, such as ‘are no longer obligated to’

(Fig. 7). Also remember that dataset texts were not somehow cleaned: namely,

punctuation were not removed in advance. However, proposed models managed

to get rid of most punctuation marks to different extents.

Interestingly, the deletion of irrelevant and noisy words does not worsen

the regression results. Conversely, the solutions have notable increase in the

performance in comparison with pure LSTM (Table VIII). And since proposed

solutions, without taking into account the DNet parts, are essentially LSTMs

(Equations (3.20), (3.22) and (3.23)), it can be established that not all tokens

are necessary for the successful text plagiarism detection in the field of LLMs.

4.5.2 Quantitative analysis

A quantitative analysis is performed to find out what is retained from the

initial text and what kinds of tokens are considered relevant or irrelevant for each

solution model.

Primarily, the average length of the initial text and the average length of ob-

tained texts for each solution model in the test dataset are compared (Table IX).

All the proposed models in average can shrink the initial text by at least 30%.

4.5 Representations analysis 54

Interestingly, the number of removed words has no explicit correlation with the

performance of the model. So, SRM-A removes about 68% of words in average

and has the second-place performance among solutions, while the SRM-D shows

the worst performance among the solutions, though it has the smallest average

percentage of deleted words (Table VIII). Apparently, the number of deleted to-

kens is not as important as which tokens are deleted and which ones are retained.

TABLE IX
The initial average length and the obtained average length by SRM-R, SRM-A

and SRM-D in test dataset

Architecture Initial Length Resulting Length Removed Percentage

SRM-R
39.79

26.03 13.76 34.58%
SRM-A 12.59 27.20 68.36%
SRM-D 27.67 12.12 30.46%

Therefore, an analysis of the types of deleted and retained words was carried

out (Table X). The most deleted words for all solution models are non-content

words, such as prepositions and pronouns. Such words are usually uninformative

for plagiarism detection task. In contrast, the least deleted words for all solution

models are mainly verbs and modal verbs, which can indeed be considered as

relevant for plagiarism detection, as they build a backbone of the text. However,

there are some words, the ratio of deletions of which differs significantly for dif-

ferent solution models. For example, SRM-R and SRM-A models always delete

word ‘no’, while SRM-D always retains it. Other example is word ‘but’, which

is more frequently deleted by SRM-D that by SRM-R. Although both ‘no’ and

‘but’ may radically change the meaning of the text, solution models are signifi-

cant differs in the assessment of informativeness of these words. The difference

in the perception of such kind of words can play a crucial role in the performance

4.5 Representations analysis 55

of the model.

TABLE X
Examples of the most and least deleted words in the test dataset. The upper part
of table presents words that are frequently deleted by all solution models. The

middle part shows words, the ratio of deletions of which differs significantly for
different solution models. Finally, the bottom part of the table shows words that

are rarely deleted by all solution models

Token Count
SRM-R SRM-A SRM-D

Deleted Percentage Deleted Percentage Deleted Percentage

now 9 9 100.00% 9 100.00% 9 100.00%

who 13 11 84.62% 13 100.00% 10 76.92%

under 8 5 62.50% 8 100.00% 7 87.50%

but 20 10 50.00% 20 100.00% 18 90.00%

the 581 315 54.22% 563 96.90% 156 26.85%

no 5 5 100.00% 5 100.00% 0 0.00%

understand 14 0 0.00% 0 0.00% 0 0.00%

must 7 0 0.00% 0 0.00% 0 0.00%

new 13 0 0.00% 0 0.00% 0 0.00%

As a result, the qualitative and quantitative analysis show that SRM-R, SRM-

A and SRM-D can automatically learn efficient text representation for plagiarism

detection in the field of LLMs by removing task-irrelevant words. Such process

of building text representations can increase the model performance, and also

correlates well with human ideas about informative and uninformative words.

4.6 Limitations and Future Work 56

4.6 Limitations and Future Work

The process of dataset collection, described in Section 3.2, can be a topic

for discussion. The quality of obtained texts highly depends on the used LLMs

and prompts for plagiarism generation. Therefore, usage of more innovative ver-

sions of LLMs, which are nowadays appearing very quickly, and knowledge of

the prompt-engineering can be considered as ways of improving dataset building

process for future researches. Moreover, the base dataset can be changed to detect

the text plagiarism in the specific fields.

This research considers only the simplest types of text plagiarism, which

are referred to as to Type 1 plagiarism and Type 2 plagiarism. So, the more

complex plagiarism cases were not included into this paper, though detecting

sophisticated text plagiarism remains an important task. Therefore, the definition

and investigation of complex text plagiarism cases using the method, proposed in

this research, stays for the future research.

DRL algorithms implemented in this study, namely REINFORCE, Advan-

tage Actor-Critic and Deep Q-Network, are classical. Integration of other innova-

tive DRL approaches, such as Deep Deterministic Policy Gradients ([28]), Proxi-

mal Policy Optimization ([29]) and Trust Region Policy Optimization ([30]), into

DNet can be the subject for further research.

Section 3.3.2 defines the Structured representation model (SRM), which is

based on LSTM model in this study. However, regression results (Table VIII)

show that CNN-based models have a good potential for being used inside SRM.

Moreover, not only CNN, but any other context-saving model, such as RAE

([31]), can be integrated to SRM. In such case, the notion of state would be mod-

ified too. Therefore, testing different SRM architectures can also be considered

4.6 Limitations and Future Work 57

for further research.

Finally, the lack of the time and computational resources can be considered

as the main limitation of this study. This limitation affects all stages: dataset

building, solution architecture, experiments settings and baseline choice. There-

fore, testing the proposed architecture on bigger datasets with more deep models

and for longer time is natural next step to further study.

Chapter 5

Conclusion

This study presented the method based on deep reinforcement learning for

text plagiarism detection in the field of large language models. The synthetic

dataset was generated with the use of state-of-the-art large language models to

train and evaluate the performance of the solution models. The architectures

based on REINFORCE (SRM-R), Advantage Actor-Critic (SRM-A) and Deep

Q-Network (SRM-D) deep reinforcement learning algorithms were implemented

to learn task-relevant text representations by removing uninformative words from

the initial text. Although solution architectures discovered different text repre-

sentations, conducted experiments show that all the proposed models outperform

chosen baselines and are able to build efficient text representations for plagiarism

detection task. Therefore, the proposed method has a great potential in further

research on the text plagiarism detection in general and in the field of large lan-

guage models in particular.

Bibliography cited

[1] T. Zhang, M. Huang, and L. Zhao, “Learning structured representation for

text classification via reinforcement learning,” Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 32, no. 1, Apr. 2018, ISSN: 2159-

5399. DOI: 10 . 1609 / aaai . v32i1 . 12047. [Online]. Available:

http://dx.doi.org/10.1609/aaai.v32i1.12047.

[2] Y. Liu and M. Lapata, “Learning structured text representations,” Transac-

tions of the Association for Computational Linguistics, vol. 6, pp. 63–75,

Dec. 2018, ISSN: 2307-387X. DOI: 10.1162/tacl_a_00005. [On-

line]. Available: http://dx.doi.org/10.1162/tacl_a_00005.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of

deep bidirectional transformers for language understanding, 2018. DOI:

10.48550/ARXIV.1810.04805. [Online]. Available: https://

arxiv.org/abs/1810.04805.

[4] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of go with

deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–

489, Jan. 2016, ISSN: 1476-4687. DOI: 10.1038/nature16961. [On-

line]. Available: http://dx.doi.org/10.1038/nature16961.

https://doi.org/10.1609/aaai.v32i1.12047
http://dx.doi.org/10.1609/aaai.v32i1.12047
https://doi.org/10.1162/tacl_a_00005
http://dx.doi.org/10.1162/tacl_a_00005
https://doi.org/10.48550/ARXIV.1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature16961

BIBLIOGRAPHY CITED 60

[5] X. Zhu, P. Sobhani, and H. Guo, Long short-term memory over tree struc-

tures, 2015. DOI: 10.48550/ARXIV.1503.04881. [Online]. Avail-

able: https://arxiv.org/abs/1503.04881.

[6] K. S. Tai, R. Socher, and C. D. Manning, Improved semantic representa-

tions from tree-structured long short-term memory networks, 2015. DOI:

10.48550/ARXIV.1503.00075. [Online]. Available: https://

arxiv.org/abs/1503.00075.

[7] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchi-

cal attention networks for document classification,” in Proceedings of the

2016 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Association

for Computational Linguistics, 2016. DOI: 10.18653/v1/n16-1174.

[Online]. Available: http://dx.doi.org/10.18653/v1/N16-

1174.

[8] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “A

brief survey of deep reinforcement learning,” 2017. DOI: 10.48550/

ARXIV.1708.05866. [Online]. Available: https://arxiv.org/

abs/1708.05866.

[9] H. Teng, Y. Li, F. Long, M. Xu, and Q. Ling, “Reinforcement learning for

extreme multi-label text classification,” in Cognitive Systems and Signal

Processing. Springer Singapore, 2021, pp. 243–250, ISBN: 9789811623363.

DOI: 10.1007/978-981-16-2336-3_22. [Online]. Available:

http://dx.doi.org/10.1007/978-981-16-2336-3_22.

[10] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, Enriching word vec-

tors with subword information, 2016. DOI: 10.48550/ARXIV.1607.

https://doi.org/10.48550/ARXIV.1503.04881
https://arxiv.org/abs/1503.04881
https://doi.org/10.48550/ARXIV.1503.00075
https://arxiv.org/abs/1503.00075
https://arxiv.org/abs/1503.00075
https://doi.org/10.18653/v1/n16-1174
http://dx.doi.org/10.18653/v1/N16-1174
http://dx.doi.org/10.18653/v1/N16-1174
https://doi.org/10.48550/ARXIV.1708.05866
https://doi.org/10.48550/ARXIV.1708.05866
https://arxiv.org/abs/1708.05866
https://arxiv.org/abs/1708.05866
https://doi.org/10.1007/978-981-16-2336-3_22
http://dx.doi.org/10.1007/978-981-16-2336-3_22
https://doi.org/10.48550/ARXIV.1607.04606
https://doi.org/10.48550/ARXIV.1607.04606
https://doi.org/10.48550/ARXIV.1607.04606

BIBLIOGRAPHY CITED 61

04606. [Online]. Available: https://arxiv.org/abs/1607.

04606.

[11] Y. Prabhu and M. Varma, “Fastxml: A fast, accurate and stable tree-classifier

for extreme multi-label learning,” in Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data mining, ser. KDD

’14, ACM, Aug. 2014. DOI: 10.1145/2623330.2623651. [Online].

Available: http://dx.doi.org/10.1145/2623330.2623651.

[12] Y. Kim, Convolutional neural networks for sentence classification, 2014.

DOI: 10.48550/ARXIV.1408.5882. [Online]. Available: https:

//arxiv.org/abs/1408.5882.

[13] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain, “Sparse local embeddings

for extreme multi-label classification,” in Advances in Neural Information

Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R.

Garnett, Eds., vol. 28, Curran Associates, Inc., 2015. [Online]. Available:

https://proceedings.neurips.cc/paper_files/paper/

2015/file/35051070e572e47d2c26c241ab88307f-Paper.

pdf.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through

deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,

Feb. 2015, ISSN: 1476-4687. DOI: 10.1038/nature14236. [Online].

Available: http://dx.doi.org/10.1038/nature14236.

[15] E. Lin, Q. Chen, and X. Qi, “Deep reinforcement learning for imbalanced

classification,” Applied Intelligence, vol. 50, no. 8, pp. 2488–2502, Mar.

2020, ISSN: 1573-7497. DOI: 10.1007/s10489-020-01637-z.

https://doi.org/10.48550/ARXIV.1607.04606
https://doi.org/10.48550/ARXIV.1607.04606
https://doi.org/10.48550/ARXIV.1607.04606
https://doi.org/10.48550/ARXIV.1607.04606
https://arxiv.org/abs/1607.04606
https://arxiv.org/abs/1607.04606
https://doi.org/10.1145/2623330.2623651
http://dx.doi.org/10.1145/2623330.2623651
https://doi.org/10.48550/ARXIV.1408.5882
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
https://proceedings.neurips.cc/paper_files/paper/2015/file/35051070e572e47d2c26c241ab88307f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/35051070e572e47d2c26c241ab88307f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/35051070e572e47d2c26c241ab88307f-Paper.pdf
https://doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
https://doi.org/10.1007/s10489-020-01637-z

BIBLIOGRAPHY CITED 62

[Online]. Available: http://dx.doi.org/10.1007/s10489-

020-01637-z.

[16] C. Drummond and R. Holte, “C4.5, class imbalance, and cost sensitivity:

Why under-sampling beats oversampling,” Proceedings of the ICML’03

Workshop on Learning from Imbalanced Datasets, Jan. 2003.

[17] S. Wang, W. Liu, J. Wu, L. Cao, Q. Meng, and P. J. Kennedy, “Train-

ing deep neural networks on imbalanced data sets,” in 2016 International

Joint Conference on Neural Networks (IJCNN), IEEE, Jul. 2016. DOI: 10.

1109/ijcnn.2016.7727770. [Online]. Available: http://dx.

doi.org/10.1109/IJCNN.2016.7727770.

[18] Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural networks with

methods addressing the class imbalance problem,” IEEE Transactions on

Knowledge and Data Engineering, vol. 18, no. 1, pp. 63–77, Jan. 2006,

ISSN: 1041-4347. DOI: 10.1109/tkde.2006.17. [Online]. Available:

http://dx.doi.org/10.1109/TKDE.2006.17.

[19] J. J. Chen, C.-A. Tsai, H. Moon, H. Ahn, J. J. Young, and C.-H. Chen,

“Decision threshold adjustment in class prediction,” SAR and QSAR in

Environmental Research, vol. 17, no. 3, pp. 337–352, Jun. 2006, ISSN:

1029-046X. DOI: 10.1080/10659360600787700. [Online]. Avail-

able: http://dx.doi.org/10.1080/10659360600787700.

[20] G. Li, M. Dong, L. Ming, et al., “Deep reinforcement learning based en-

semble model for rumor tracking,” Information Systems, vol. 103, p. 101 772,

Jan. 2022, ISSN: 0306-4379. DOI: 10.1016/j.is.2021.101772.

[Online]. Available: http://dx.doi.org/10.1016/j.is.

2021.101772.

http://dx.doi.org/10.1007/s10489-020-01637-z
http://dx.doi.org/10.1007/s10489-020-01637-z
https://doi.org/10.1109/ijcnn.2016.7727770
https://doi.org/10.1109/ijcnn.2016.7727770
http://dx.doi.org/10.1109/IJCNN.2016.7727770
http://dx.doi.org/10.1109/IJCNN.2016.7727770
https://doi.org/10.1109/tkde.2006.17
http://dx.doi.org/10.1109/TKDE.2006.17
https://doi.org/10.1080/10659360600787700
http://dx.doi.org/10.1080/10659360600787700
https://doi.org/10.1016/j.is.2021.101772
http://dx.doi.org/10.1016/j.is.2021.101772
http://dx.doi.org/10.1016/j.is.2021.101772

BIBLIOGRAPHY CITED 63

[21] X. Zhang, J. Zhao, and Y. LeCun, Character-level convolutional networks

for text classification, 2015. DOI: 10.48550/ARXIV.1509.01626.

[Online]. Available: https://arxiv.org/abs/1509.01626.

[22] G. Wang, S. Cheng, X. Zhan, X. Li, S. Song, and Y. Liu, Openchat: Ad-

vancing open-source language models with mixed-quality data, 2024. arXiv:

2309.11235 [cs.CL].

[23] R. J. Williams, “Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning,” Machine Learning, vol. 8, no. 3–4, pp. 229–

256, May 1992, ISSN: 1573-0565. DOI: 10.1007/bf00992696. [On-

line]. Available: http://dx.doi.org/10.1007/BF00992696.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-

putation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, ISSN: 1530-888X. DOI:

10.1162/neco.1997.9.8.1735. [Online]. Available: http:

//dx.doi.org/10.1162/neco.1997.9.8.1735.

[25] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for

word representation,” in Proceedings of the 2014 Conference on Empir-

ical Methods in Natural Language Processing (EMNLP), Association for

Computational Linguistics, 2014. DOI: 10.3115/v1/d14-1162. [On-

line]. Available: http://dx.doi.org/10.3115/v1/D14-1162.

[26] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.

DOI: 10.48550/ARXIV.1412.6980. [Online]. Available: https:

//arxiv.org/abs/1412.6980.

https://doi.org/10.48550/ARXIV.1509.01626
https://arxiv.org/abs/1509.01626
https://arxiv.org/abs/2309.11235
https://doi.org/10.1007/bf00992696
http://dx.doi.org/10.1007/BF00992696
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3115/v1/d14-1162
http://dx.doi.org/10.3115/v1/D14-1162
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

BIBLIOGRAPHY CITED 64

[27] A. Vaswani, N. Shazeer, N. Parmar, et al., Attention is all you need, 2017.

DOI: 10.48550/ARXIV.1706.03762. [Online]. Available: https:

//arxiv.org/abs/1706.03762.

[28] T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., Continuous control with deep

reinforcement learning, 2015. DOI: 10.48550/ARXIV.1509.02971.

[Online]. Available: https://arxiv.org/abs/1509.02971.

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal

policy optimization algorithms, 2017. DOI: 10.48550/ARXIV.1707.

06347. [Online]. Available: https://arxiv.org/abs/1707.

06347.

[30] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, Trust region

policy optimization, 2015. DOI: 10.48550/ARXIV.1502.05477.

[Online]. Available: https://arxiv.org/abs/1502.05477.

[31] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning,

“Semi-supervised recursive autoencoders for predicting sentiment distri-

butions,” in Proceedings of the 2011 Conference on Empirical Methods

in Natural Language Processing, R. Barzilay and M. Johnson, Eds., Ed-

inburgh, Scotland, UK.: Association for Computational Linguistics, Jul.

2011, pp. 151–161. [Online]. Available: https://aclanthology.

org/D11-1014.

https://doi.org/10.48550/ARXIV.1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/ARXIV.1509.02971
https://arxiv.org/abs/1509.02971
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.48550/ARXIV.1502.05477
https://arxiv.org/abs/1502.05477
https://aclanthology.org/D11-1014
https://aclanthology.org/D11-1014

Appendix A

Additional experiments

The qualitative analysis of obtained text representations (Table X) is not

quite representative, mostly due to small test dataset size.

The AG News test dataset consisting of 7600 samples was used. To take

into consideration the different mean ratios of deletions of different models (Ta-

ble IX), the deletion ratio of concrete word was normalized by subtracting the

mean deletion ration of this word and dividing by standard deviation.

TABLE XI
The initial average length, mean of removed ratio and the standard deviation of

obtained length by SRM-R, SRM-A and SRM-D in AG News test dataset

Architecture Initial Length Removed Ratio Mean Removed Ratio STD

SRM-R
192.4

0.31 0.39
SRM-A 0.74 0.38
SRM-D 0.42 0.41

66

TABLE XII
Tendency to delete words denoting the days of the week in the AG News test
dataset. Although the ratios of deletion vary greatly for different models, each

model gives approximately the same degree of relevance to words that are
similar in meaning

Token Count Model Deleted Ratio Normalized ratio

Monday 497

SRM-R 54 0.11 -0.49

SRM-A 493 0.99 0.65

SRM-D 191 0.38 -0.09

Tuesday 487

SRM-R 82 0.17 -0.34

SRM-A 483 0.99 0.65

SRM-D 187 0.38 -0.09

Wednesday 443

SRM-R 68 0.15 -0.38

SRM-A 443 1.00 0.67

SRM-D 193 0.44 0.03

Thursday 447

SRM-R 45 0.10 -0.51

SRM-A 445 0.99 0.66

SRM-D 173 0.39 -0.09

Friday 406

SRM-R 66 0.16 -0.36

SRM-A 405 0.99 0.67

SRM-D 93 0.23 -0.47

67

TABLE XIII
Tendency to delete words denoting the brands in the AG News test dataset. Most

of models prefer not to delete the brand names, which is correlate with human
understanding of plagiarism generation: brand names can not be paraphrased

Token Count Model Deleted Ratio Normalized ratio

AMD 21

SRM-R 6 0.29 -0.05

SRM-A 0 0.00 -1.91

SRM-D 2 0.1 -0.80

Dell 30

SRM-R 13 0.43 0.32

SRM-A 0 0.00 -1.91

SRM-D 1 0.03 -0.95

Intel 74

SRM-R 26 0.35 0.11

SRM-A 1 0.01 -1.88

SRM-D 8 0.11 -0.76

Nvidia 7

SRM-R 0 0.00 -0.77

SRM-A 0 0.00 -1.91

SRM-D 2 0.29 -0.33

Xbox 10

SRM-R 2 0.20 -0.26

SRM-A 0 0.00 -1.91

SRM-D 1 0.10 -0.78

68

TABLE XIV
Tendency to delete words connected to sport in the AG News test dataset. Most

of models prefer not to delete words relative to sport

Token Count Model Deleted Ratio Normalized ratio

Sports 120

SRM-R 0 0.00 -0.77

SRM-A 2 0.02 -1.87

SRM-D 15 0.13 -0.72

Chess 3

SRM-R 0 0.00 -0.77

SRM-A 0 0.00 -1.91

SRM-D 0 0.00 -1.03

Football 106

SRM-R 1 0.01 -0.74

SRM-A 20 0.19 -1.43

SRM-D 37 0.35 -0.18

Hockey 25

SRM-R 3 0.12 -0.47

SRM-A 6 0.24 -1.30

SRM-D 9 0.36 -0.15

Tennis 21

SRM-R 1 0.05 -0.65

SRM-A 8 0.38 -1.93

SRM-D 8 0.38 -0.10

69

TABLE XV
Tendency to delete words denoting jobs in the AG News test dataset. Most of

models prefer not to delete words relative to jobs

Token Count Model Deleted Ratio Normalized ratio

Consumers 42

SRM-R 6 0.14 -0.40

SRM-A 7 0.01 -1.67

SRM-D 13 0.31 -0.27

Investors 93

SRM-R 6 0.06 -0.60

SRM-A 0 0.00 -1.91

SRM-D 27 0.29 -0.32

Scientists 70

SRM-R 12 0.17 -0.34

SRM-A 1 0.01 -1.88

SRM-D 23 0.33 -0.23

Customers 69

SRM-R 5 0.07 -0.58

SRM-A 4 0.06 -1.76

SRM-D 20 0.29 -0.32

Shareholders 31

SRM-R 5 0.16 -0.36

SRM-A 3 0.01 -1.66

SRM-D 12 0.39 -0.08

70

TABLE XVI
Tendency to delete words denoting the high technologies in the AG News test

dataset. Most of models prefer not to delete words relative to high technologies

Token Count Model Deleted Ratio Normalized ratio

Technology 162

SRM-R 9 0.06 -0.63

SRM-A 0 0.00 -1.91

SRM-D 10 0.06 -0.88

Semiconductor 28

SRM-R 0 0.00 -0.77

SRM-A 0 0.00 -1.91

SRM-D 0 0.00 -1.03

Display 15

SRM-R 1 0.07 -0.60

SRM-A 0 0.00 -1.91

SRM-D 2 0.13 -0.70

Wireless 106

SRM-R 4 0.04 -0.67

SRM-A 1 0.01 -1.89

SRM-D 12 0.13 -0.75

	Introduction
	Considered text plagiarism types
	The relevance of applying DRL to text plagiarism detection
	Deep reinforcement learning approaches
	Q-learning
	Policy Gradients

	Limitations and implications

	Literature Review
	Search process
	Existing approaches
	Policy Gradients approach
	Deep Q-network approach
	Ensemble approach

	Conclusions and insights

	Methodology
	Research design
	Data collection
	Base dataset selection
	Plagiarism generation
	Dataset compilation

	Solution architecture
	Decision Network (DNet)
	REINFORCE
	Advantage Actor-Critic (A2C)
	Deep Q-Network (DQN)

	Structured representation model (SRM)
	Regression Network (RNet)

	Evaluation and Discussion
	Training details
	Experiment settings
	Baselines
	Regression results
	Representations analysis
	Qualitative analysis
	Quantitative analysis

	Limitations and Future Work

	Conclusion
	Bibliography cited
	Additional experiments

