
RECOMMENDATION SYSTEMS VIA APPROXIMATE MATRIX
FACTORIZATION

GROUP 1 REPORT FOR HDDA F24 COURSE

Dmitry Beresnev
AIDS-MS1, Innopolis University

d.beresnev@innopolis.university

Vsevolod Klyushev
AIDS-MS1, Innopolis University

v.klyushev@innopolis.university

1 Introduction

1.1 Problem formulation

We were given the following problem:

min
U∈Rm×r,V ∈Rr×n

∥W ◦ (X − UV )∥2F (1)

where X ∈ Rm×n — target matrix, W ∈ Rm×n — binary matrix (0 or 1), r ∈ R+ — rank of factorization.

1.2 Initialization of U, V

In order to have a good starting point, we decided to do the following:

• Impute unknown cells in matrix with mean among movies (via sklearn SimpleImputer)

• Perform randomized SVD decomposition (via sklearn randomized SVD) with required rank

• Take necessary number of first and last components of decomposition as U and V matrices correspondingly

2 Notations

Notation Meaning

⟨·, ·⟩ dot product (Frobenius inner product in case of matrices)

∥ · ∥ second norm (Frobenius norm in case of matrices)

f, f(·) objective function

∇f,∇f(·) gradient of objective function

Xi i-th column of matrix X

X⊤
i i-th row of matrix X



Recommendation systems via approximate matrix factorization

3 Gradient Descent

3.1 Gradients derivation

In order to use Gradient Descent method Algorithm 1, we need to compute gradients with respect to each parameter U
and V . Using matrix-vector differentiation rules and some help from [2], we obtained the following:

∂∥W ◦ (X − UV )∥2F
∂U

= −2(W ◦X)V T + 2(W ◦ (UV ))V T

∂∥W ◦ (X − UV )∥2F
∂V

= −2UT (W ◦X) + 2UT (W ◦ (UV ))

(2)

Algorithm 1 Gradient Descent optimizer
Input: θ0 (parameters to optimize), f(θ) (objective function), L(p) (step size choosing strategy)

for t = 1 to . . . do
pt ← −∇θft(θt−1) ▷ Step direction
Choose step size γ according to L(pt)
θt ← θt−1 + γpt

end for
return θt

We have also added the regularization, so the final problem is

min
U∈Rm×r,V ∈Rr×n

∥W ◦ (X − UV )∥2F + λ∥U∥2F + λ∥V ∥2F (3)

where λ — regularization parameter.

Finally, gradients of Equation (2) is computed as

∂(∥W ◦ (X − UV )∥2F + λ∥U∥2F + λ∥V ∥2F )
∂U

= −2(W ◦X)V T + 2(W ◦ (UV ))V T + 2λU

∂(∥W ◦ (X − UV )∥2F + λ∥U∥2F + λ∥V ∥2F )
∂V

= −2UT (W ◦X) + 2UT (W ◦ (UV )) + 2λV

(4)

The overall method is then the following: on each iteration we:

1. Fix V and update U using the first equation of Equation (4) and Algorithm 1
2. Fix U and update V using the second equation of Equation (4) and Algorithm 1

Since the objective function is f : Rm×n → R, the gradients are matrices. However, some step sizes strategies and
optimizers uses dot product (for example, between descent direction and gradient). Therefore, hereafter, we substitute,
where it is necessary, vector dot product with Frobenius inner product, defined as:

⟨A,B⟩F = Tr(ATB) (5)

3.2 Step size strategies

We decided to test different strategies for finding the decent step size α.

Constant step size
αk = α

Decreasing step size
αk =

1

k
or, alternatively,

αk =
1√
k

2



Recommendation systems via approximate matrix factorization

Estimation of Lipschitz constant We know that for L-smooth function f , the following holds:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,∀x, y

Also, we know that in case of L-smooth function, the optimal step size would be αk = 1
L . Hence, we can try to

iteratively estimate it, what is done in Algorithm 3.

Armijo rule A step length α is said to satisfy the Armijo condition, restricted to the descent direction p (pT∇f(x) < 0)
if the following holds:

f(x+ αp) ≤ f(x) + c1α⟨p,∇f(x)⟩ (6)

where c1 > 0 is typically small (about 0.01) constant.

The Armijo rule ensures the ‘sufficient’ decrease in the function after making a step (Figure 1). Hence, Algorithm 4
iteratively decreases step size until it satisfies the Armijo condition.

Weak Wolfe conditions A step length α is said to satisfy the curvature condition, restricted to the descent direction p
if the following holds:

−⟨p,∇f(x+ α)⟩ ≤ −c2⟨p,∇f(x)⟩ (7)

where c2 > 0. The curvature condition helps to find points, in which our function is not decreasing as fast as in starting
point Figure 2.

A step length α is said to satisfy the (Weak) Wolfe conditions (Figure 3) with c2 > c1 > 0, if both Equations (6) and (7)
holds. Therefore, we can iteratively decrease step size until it satisfies the Weak Wolfe conditions. In [1] the efficient
bisection algorithm (Algorithm 5) for such procedure is presented.

Strong Wolfe conditions However, the Wolfe conditions can result in a value for the step length that is not close to a
minimizer of ϕ(α) = f(x+ αp). We can modify the curvature condition as following:

∥⟨p,∇f(x+ α)⟩∥ ≤ c2∥⟨p,∇f(x)⟩∥ (8)

A step length α is said to satisfy the Strong Wolfe conditions (Figure 4) with c2 > c1 > 0, if both Equations (6) and (8)
holds.These conditions force α to lie close to a critical point of ϕ. The algorithm that searches for points satisfying the
String Wolfe Conditions is presented in Algorithm 6.

3.3 Optimizers

We have also decided to try other optimizer rather than only Gradient Descent. New optimization algorithms can help
to improve the convergence and avoid local minima by introducing either the idea of momentum (Algorithms 8 and 9),
or adaptivity (Algorithms 7 and 10 to 12).

Adaptive gradient descent Relatively new approach, proposed in 2020 in paper [4], which is more the step size
search approach, than the true optimizer. This method has several advantages:

• It is not iterative

• It relies on local smoothness (as a method of estimating 1
L )

. In a nutshell, the algorithm Algorithm 7 at each iteration k tries to find the maximum step size αk satisfying

α2
k

α2
k−1

≤ (1 + θk−1)

αk ≤
∥xk − xk−1∥

2∥∇f(xk)−∇f(xk−1)

(9)

where θk = αk

αk−1
.

The first inequality of Equation (9) makes sure new step size not to be too big compared to previous. The second
inequality of Equation (9) sets upper bound for step to be 1

2L , where L is that the smoothness condition holds for the
current and the precious points.

3



Recommendation systems via approximate matrix factorization

Heavy Ball In theory is usually written as

xk+1 = xk − αk∇f(xk) + βk(xk − xk−1)

where β — momentum, which determines the effect of the previous steps on the current update.

The Heavy Ball method was proposed in 1964 by Boris Polyak. This is a classic improvement of the standard Gradient
Descent by adding momentum: the method combines the current gradient with the previous history to accelerate
convergence.

Realization is presented in Algorithm 8.

Nesterov momentum In theory is usually written as

xk+1 = yk − αk∇f(yk)
yk+1 = xk+1 + βk(xk+1 − xk)

where βk — momentum, usually taken constant βk = β .

The Nesterov Accelerated Method extends the idea of momentum in Gradient Descent. It was introduced by Yuri
Nesterov in 1983. The basic idea is to use partial prediction when updating parameters, including momentum to
accelerate convergence. The key difference from the heavy ball method is that due to the impulse to the gradient
counting point, extrapolation, or ‘looking into the future’ occurs.

Realization is presented in Algorithm 9.

AdaGrad

gk = ∇f(xk)

Gk = Gk−1 + g2k

xk+1 = xk −
γk√

Gk + ϵ
gk

where Gk — cumulative squared sum of gradients, ϵ — small constant for stability.

AdaGrad was developed to solve the problems associated with setting a uniform learning rate for all parameters,
especially in situations where the features have significantly different frequency or importance: it would be good to be
able to update the parameters with an eye to how typical a feature they capture.

Realization is presented in Algorithm 10.

RMSprop

gk = ∇f(xk)

Gk = βGk−1 + (1− β)g2k

xk+1 = xk −
γk√

Gk + ϵ
gk

where Gk — weighted moving average of squared gradients.

The key idea of RMSProp is to scale the gradient of each weight in the model by dividing it by the root mean square
value of the gradients of that weight. This helps prevent weights with high gradients from learning too quickly, while at
the same time allowing weights with low gradients to continue learning faster. Method solves the main problem of
AdaGrad — old gradients and recent gradients have different weights, that is, there is a kind of ‘forgetting’ of history.

Realization is presented in Algorithm 11.

4



Recommendation systems via approximate matrix factorization

Adam
gk = ∇f(xk)

mk = β1mk−1 + (1− β1)gk

vk = β2vk−1 + (1− β2)g
2
k

m̂k =
mk

1− βk
1

v̂k =
vk

1− βk
2

xk+1 = xk −
γk√
v̂k + ϵ

m̂k

where mk, vk — so called first and second momentum of gradient.

Adam supports exponential moving averages of weights and gradients, which it uses to scale the learning rate: it uses
estimates of the mean and variance of gradients to adaptively scale the learning rate during training.

If we consider the following type of formula for correction (v̂k):

v̂k =
(1− β2)

∑k
i=1 β

k−i
2 diag(gi ⊙ gi)

1− βk
2

.

one can notice that g2k is taken with a weight of 1, g2k−1 is taken with a weight of β2, g2k−2 is taken with a weight of

β2
2 , and so on. Next, all weights are divided by 1 + β2 + β2

2 + · · ·+ βk
2 =

1−βk
2

(1−β2)
. Thus, the sum of all the weights is

equal to 1, that is, a convex combination is obtained. Therefore, the weights for the gradients depend on the iteration
number. In the initial iterations, it behaves in a similar way to AdaGrad, and in the later iterations it becomes similar to
RMSprop.

Realization is presented in Algorithm 12.

BFGS The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is a quasi-Newton method, that approximates the
Hessian Bk of the objective function. The authors suggest to compute Hk = B−1

k by solving

min
H
∥Hk −H∥

s.t. H = H⊤

Hyk = sk

(10)

where yk = ∇f(xk+1)−∇f(xk) and sk = xk+1 − xk.

The suggestion is quite intuitive: let us look for the Hk that is closest in any norm to the real inverse Hessian, satisfies
the quasi-Newtonian equation (last equality in Equation (10)) and is symmetric (like the real inverted Hessian itself).

The authors proved that a two-rank Hessian update is enough:

Bk+1 = Bk + αuuT + βvvT

And one can obtain the equation for the inverted hessian:

Hk+1 = (I − ρksky
⊤
k )Hk(I − ρkyks

⊤
k ) + ρksks

⊤
k ,

where ρk =
1

y⊤k sk
.

Realization is presented in Algorithm 13.

Note, that we can not directly use BFGS for the methods Equations (1) and (3), because the approximated hessian (and
its inverse) would be tensors as second derivatives of function f : Rm×n → R. However, this methods can be used for
Section 4.

4 Vector Gradient Descent

Instead of making update for entire U or V simultaneously, we can make updates row by row (column by column for
V ). The reasons are the following:

5



Recommendation systems via approximate matrix factorization

1. The objective function becomes f : Rd → R, so we can apply methods like BFGS (Algorithm 13)

2. There will be more updates, and such updates will be more diverse: we will use just updated values for new
updates

Therefore, the new problem with fixed V becomes

min
U⊤

i ∈Rr
∥W⊤

i ◦ (X⊤
i − U⊤

i V )∥2 + λ∥U⊤
i ∥2, ∀i ∈ {1, 2, . . . ,m} (11)

and the new problem with fixed U :

min
Vj∈Rr

∥Wj ◦ (Xj − UVj)∥2 + λ∥Vj∥2, ∀j ∈ {1, 2, . . . , n} (12)

Hence gradient of Equation (11) is

∂(∥W⊤
i ◦ (X⊤

i − U⊤
i V )∥2 + λ∥U⊤

i ∥2)
∂U⊤

i

= −2(W⊤
i ◦X⊤

i )V T + 2(W⊤
i ◦ (U⊤

i V ))V T + 2λU⊤
i (13)

and the gradient of Equation (12):

∂(∥Wj ◦ (Xj − UVj)∥2 + λ∥Vj∥2)
∂Vj

= −2UT (Wj ◦Xj) + 2UT (Wj ◦ (UVj)) + 2λVj (14)

Obviously, if we want to obtain more diverse updates, we should change the order of U and V updates: if we firstly
update all rows of U and only then all the columns of V , the updates would be the same as in Equation (4).

Remember, X ∈ Rm×n, what means that number of rows of U and number of columns of V has the ratio m
n ≈

kU

kV
,

where kU and kV are possibly small integers. Therefore,it is reasonable to firstly update kU rows of U and then update
kV columns of V . For the given problem, X ∈ R6040×3952, so kU ≈ 3 and kV ≈ 2 The final algorithm, what we called
Vector Gradient Descent, then looks as presented in Algorithm 2.

Algorithm 2 Vector Gradient Descent
Input: X,W ∈ Rm×n — given initial and binary matrices, U ∈ Rm×r, V ∈ Rr×n — arbitrary matrices, kU , kV —

small integers such that m
n ≈

kU

kV

d← kU + kV
repeat

for t = 0 to n+m− 1 do
r ← t mod d
if r < kU then

i← kU · (t div d) + r + 1
if i > m then

continue
end if
Update U⊤

i using Equation (13)
else

j ← kV · (t div d) + r − kU + 1
if j > n then

continue
end if
Update Vj using Equation (14)

end if
end for

until convergence

return U, V

6



Recommendation systems via approximate matrix factorization

5 Non-Negative Matrix Factorization (NNMF)

Let us add to the initial problem (Equation (1)) non-negativity constraints:

min
U∈Rm×r,V ∈Rr×n

∥W ◦ (X − UV )∥2F

s.t. U, V ≥ 0
(15)

In order to solve such problem more easily, we need to derive multiplicative updates for U and V .

Firstly, let us recall gradient update from the previous parts:

U ← U + αu((W ◦X)V T − (W ◦ (UV ))V T ) (16)

If we set αu =
U

((W ◦ (UV ))V T )
, we get:

U ← U + αu((W ◦X)V T − (W ◦ (UV ))V T ) =

= U + U ◦
((W ◦X)V T )

((W ◦ (UV ))V T )
− U ◦

((W ◦ (UV ))V T )

((W ◦ (UV ))V T )
=

= U + U ◦
((W ◦X)V T )

((W ◦ (UV ))V T )
− U =

= U ◦
((W ◦X)V T )

((W ◦ (UV ))V T )

(17)

We have achieved multiplicative update for U . Now, let us do the same for V :

V ← V + αv(U
T (W ◦X)− UT (W ◦ (UV ))) (18)

If we’ll use αv =
V

(UT (W ◦ (UV )))
, then we’ll get:

V ← V + αv(U
T (W ◦X)− UT (W ◦ (UV ))) =

= V + V ◦
(UT (W ◦X))

(UT (W ◦ (UV )))
− V ◦

(UT (W ◦ (UV )))

(UT (W ◦ (UV )))
=

= V + V ◦
(UT (W ◦X))

(UT (W ◦ (UV )))
− V =

= V ◦
(UT (W ◦X))

(UT (W ◦ (UV )))

(19)

Now we also have achieved multiplicative update for V .

Such idea was used in Lee and Seung paper [3] for problem without mask in order to avoid subtraction, so the production
of negative elements. Authors provided the proof of convergence for such adaptive learning rates for problems without
mask.

However, our binary mask W brings some problems with division operation (the division on zero or very small number
is possible). Adding some small constant ϵ to denominator captures this. This brings our multiplicative updates to be in
the following forms:

U ← U ◦
((W ◦X)V T )

((W ◦ (UV ))V T + ϵ)
(20)

V ← V ◦
(UT (W ◦X))

(UT (W ◦ (UV )) + ϵ)
(21)

However, results demonstrated by such method is not satisfactory: it over-fits on the first iteration and shows very bad
performance on test set (Figure 14).

7



Recommendation systems via approximate matrix factorization

6 Neural Network

As an alternative approach we decided to train simple neural network with the following parameters:

• 4 layers (23× 64, 64× 128, 128× 64, 64× 1)
• ReLU as activation function after each layer
• MSELoss criterion
• Adam optimizer with step size α = 0.001

• Early stopping (if on test set loss is not decreasing for 3 iterations)
• Maximum number of training epochs k = 50

Model input consists of:

• Min-max scaled ‘user_id‘
• Min-max scaled ‘movie_id‘
• One-hot encoded ‘genres‘ (we have 18 unique genres)
• Binary encoded ‘gender‘
• Min-max scaled first two user features (‘feature_1‘ and ‘feature_2‘)

As output model returns just one number — rating for specific pair of user and movie.

Model was able to achieve average MSE loss on test set ≈ 1.1

7 Results

We have tested several approaches: Gradient descent (Section 3), Vector Gradient descent (Section 4), Non-Negative
Matrix Factorization (Section 5) and Neural Network (section 6).

Both Neural Network and Vector Gradient descent showed their applicability for recommendation system task, however,
they have been outperformed by other models.

As for NNMF, after several experiments we came to the conclusion, that such approach is inapplicable for recommenda-
tion system task mostly because of the mask in the problem formulation. Mask makes NNMF to set almost all unknown
values to 1, which is quite a bad decision.

The Gradient descent method showed the best overall performance (both in terms of time and RMSE score on test data).
Among all different optimizers, step selection strategies and other hyper-parameters (you can check experiments in
Appendix D) we found the best composition: Gradient descent method for r = 10 with estimate 1/L strategy and λ = 2.
This method achieved RMSE score 0.86 on test data.

References
[1] Anton Evgrafov. Convergence of descent methods with backtracking (armijo) linesearch. bisection algorithm for

weak wolfe conditions.
[2] Kwan. Derivative of the frobenius norm of a matrix involving the hadamard products, 2020.
[3] Daniel Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization. In T. Leen, T. Dietterich,

and V. Tresp, editors, Advances in Neural Information Processing Systems, volume 13. MIT Press, 2000.
[4] Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. 2019.

8



Recommendation systems via approximate matrix factorization

Supplementary materials
A Step Size Conditions Figures

Figure 1: Armijo rule

Figure 2: Curvature condition

9



Recommendation systems via approximate matrix factorization

Figure 3: Weak Wolfe conditions

Figure 4: Strong Wolfe conditions

10



Recommendation systems via approximate matrix factorization

B Step selection Algorithms

Algorithm 3 Estimate 1/L

Input: θ (point),∇f(θ) (gradient function), p (desired direction), β (multiplier), t (max iterations)
α← 1
for i = 1 to t do

θi ← θ + αp
if ∥∇f(θ)−∇f(θi)∥ > 1

α∥θ − θi∥ then
α← β · α
if α < ϵ then

return α
end if

else
return α

end if
end for
return α

Algorithm 4 Armijo Step
Input: θ (point), f(θ) (objective function), p (desired direction), β (multiplier), c1 > 0, t (max iterations)
α← 1
for i = 1 to t do

θi ← θ + αp
if f(θi) > f(θ) + c1α⟨∇θf(θ), p⟩ then

α← β · α
if α < ϵ then

return α
end if

else
return α

end if
end for
return α

11



Recommendation systems via approximate matrix factorization

Algorithm 5 Bisection Weak Wolfe Step
Input: θ (point), f(θ) (objective function), p (desired direction), β (multiplier), c1 > 0, c2 > c1, t (max iterations)
α← 1
a← 0 ▷ Lower bound
b← +∞ ▷ Upper bound
for i = 1 to t do

θi ← θ + αp
if f(θi) > f(θ) + c1α⟨∇θf(θ), p⟩ then ▷ Armijo condition

b← α
α← 1

2 (a+ b) ▷ Decrease step
else if ⟨p,∇θf(θi)⟩ < c2⟨p,∇θf(θ)⟩ then ▷ Curvature condition

a← α
if b = +∞ then

α← 2a
else

α← 1
2 (a+ b) ▷ Increase step

end if
else

return α
end if

end for
return α

Algorithm 6 Strong Wolfe Step
Input: θ (point), f(θ) (objective function), p (desired direction), β (multiplier), c1 > 0, c2 > c1, t (max iterations)
α← 1
for i = 1 to t do

θi ← θ + αp
if
(
f(θi) > f(θ) + c1α⟨∇θf(θ), p⟩

)
or

(
∥⟨p,∇θf(θi)⟩∥ > c2∥⟨p,∇θf(θ)⟩∥

)
then

α← β · α
if α < ϵ then

return α
end if

else
return α

end if
end for
return α

C Optimizer Algorithms

Algorithm 7 Adaptive Gradient Descent
Input: x0 (parameters to optimize), f(x) (objective function)
Initialize: λ0 > 0 (small start step), θ0 ← +∞
x1 ← x0 − λ0∇f(x0)
for t = 1 to . . . do

λt = min
{√

1 + θt−1λt−1,
∥xt−xt−1∥

2∥∇f(xt)−∇f(xt−1)∥

}
xt+1 ← xt − λt∇f(xt)
θt ← λt

λt−1

end for
return xt

12



Recommendation systems via approximate matrix factorization

Algorithm 8 Heavy Ball optimizer
Input: θ0 (parameters to optimize), f(θ) (objective function), β (momentum), L(p) (step size choosing strategy)

for t = 1 to . . . do
gt ← ∇θft(θt−1)
if β ̸= 0 then

if t > 1 then
bt ← βbt−1 + gt

else
bt ← gt

end if
gt ← bt

end if
pt ← −gt ▷ Step direction
Choose step size γ according to L(pt)
θt ← θt−1 + γpt

end for
return θt

Algorithm 9 Nesterov optimizer
Input: θ0 (parameters to optimize), f(θ) (objective function), β (momentum), L(p) (step size choosing strategy)

for t = 1 to . . . do
gt ← ∇θft(θt−1)
if β ̸= 0 then

if t > 1 then
bt ← βbt−1 + gt

else
bt ← gt

end if
gt ← gt + βbt

end if
pt ← −gt ▷ Step direction
Choose step size γ according to L(pt)
θt ← θt−1 + γpt

end for
return θt

Algorithm 10 AdaGrad optimizer
Input: θ0 (parameters to optimize), f(θ) (objective function), L(p) (step size choosing strategy)
Initialize: s0 ← 0 (cumulative square sum)

for t = 1 to . . . do
gt ← ∇θft(θt−1)
st ← αst−1 + g2t
pt ← −gt/(

√
st + ϵ) ▷ Step direction

Choose step size γ according to L(pt)
θt ← θt−1 + γpt

end for
return θt

13



Recommendation systems via approximate matrix factorization

Algorithm 11 RMSProp optimizer
Input: θ0 (parameters to optimize), f(θ) (objective function), α (alpha), L(p) (step size choosing strategy)
Initialize: v0 ← 0 (square average)

for t = 1 to . . . do
gt ← ∇θft(θt−1)
vt ← αvt−1 + (1− α)g2t
pt ← −gt/(

√
vt + ϵ) ▷ Step direction

Choose step size γ according to L(pt)
θt ← θt−1 + γpt

end for
return θt

Algorithm 12 Adam optimizer
Input: θ0 (parameters to optimize), f(θ) (objective function), β1, β2 (alpha), L(p) (step size choosing strategy)
Initialize: m0 ← 0 (first moment), v0 ← 0 (second moment)

for t = 1 to . . . do
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

m̂t ← mt/(1− βt
1)

v̂t ← vt/(1− βt
2)

pt ← −m̂t/(
√
v̂t + ϵ) ▷ Step direction

Choose step size γ according to L(pt)
θt ← θt−1 + γpt

end for
return θt

Algorithm 13 BFGS optimizer
Input: θ0 (parameters to optimize), f(θ) (objective function), L(p) (step size choosing strategy)
Initialize: H0 ← I

for t = 1 to . . . do
gt ← ∇θft(θt−1)
pt ← −Hk−1gt ▷ Step direction
Choose step size γ according to L(pt) ▷ γ should satisfy Wolfe conditions
st ← γpt
θt ← θt−1 + st
yt ← ∇θft(θt)− gt

Ht ← Ht−1 +
(sTt yt+yT

t Ht−1yt)(sts
T
t )

(sTt yt)
2 − Ht−1yts

T
t +sty

T
t Ht−1

sTt yt

end for
return θt

14



Recommendation systems via approximate matrix factorization

D Experiments

Figure 5: Gradient descent (Algorithm 1)

Figure 6: Heavy Ball (Algorithm 8)

15



Recommendation systems via approximate matrix factorization

Figure 7: Nesterov Accelerated Gradient (Algorithm 9)

Figure 8: RMSProp (Algorithm 11)

16



Recommendation systems via approximate matrix factorization

Figure 9: AdaGrad (Algorithm 10)

Figure 10: Adam (Algorithm 12)

17



Recommendation systems via approximate matrix factorization

Figure 11: Comparison of optimizers with best configurations

Figure 12: Best model: r = 10, Gradient Descent with estimate 1/L strategy and λ = 2

18



Recommendation systems via approximate matrix factorization

Figure 13: Vector Gradient Descent

Figure 14: Non-Negative Matrix Factorization

19


	Introduction
	Problem formulation
	Initialization of U,V

	Notations
	Gradient Descent
	Gradients derivation
	Step size strategies
	Optimizers

	Vector Gradient Descent
	Non-Negative Matrix Factorization (NNMF)
	Neural Network
	Results
	Step Size Conditions Figures
	Step selection Algorithms
	Optimizer Algorithms
	Experiments

